From Bench to Bedside

Breakthroughs by Weill Cornell researchers promise to transform health care
From the Big Apple to the Big Red

Research and collaboration to be the focus of a new $4 billion capital campaign

In the presence of New York City Mayor Michael Bloomberg, Peter C. Meinig, chairman of the Board of Trustees of Cornell University, and Sanford I. Weill, chairman of the Board of Overseers of Weill Cornell Medical College, Cornell University President David J. Skorton announced on October 26 that the university and its Weill Cornell Medical College are launching a $4 billion capital campaign—the largest for Cornell, New York’s land grant university, and the second largest goal in the history of higher education—to advance education, discovery, and public service, and to make transformative contributions in areas of critical social importance.

The comprehensive campaign will raise in excess of $4 billion to support undergraduate and graduate students, with a focus on increasing scholarship support and financial aid; recruiting the next generation of faculty, scientists, and scholars; and by renewing and building state-of-the-art facilities best suited for twenty-first century teaching, learning, and research, across the University’s campuses.

“The impact of this campaign on higher education and research will be felt across the State of New York and across the world,” said Mr. Weill. “It is my belief that one day, the translational research conducted by doctors at Weill Cornell and Cornell scientists in Ithaca will help to eradicate some of the world’s most daunting and debilitating health threats while improving the quality of life for all. Our goal is to speed research discoveries from the bench to the bedside, where they can improve the quality of care and the quality of life for patients here in the city, across the nation, and around the world.”

A hallmark of the new campaign is the expansion of collaboration between Cornell’s Ithaca and New York City campuses, which encompasses areas such as biomedical engineering, cancer-related cell biology, nano-medicine, chemical biology and experimental therapeutics, and global health and infectious diseases—all in the service of improving health and saving lives. In fact, a shared pool of campaign funding will be earmarked specifically for these upstate/downstate, cross-disciplinary collaborations.

“One of the most important aspects of this campaign is the commitment to expand collaborative research across disciplines and across campuses to produce life-saving advances in science and medicine,” said Dr. Antonio M. Gotto Jr., Stephen and Suzanne Weiss Dean of Weill Cornell Medical College and Provost of Medical Affairs of Cornell University. “By bridging the distance between Ithaca and Manhattan and bringing our best research minds together to develop solutions for the most daunting health issues of our time, I am confident we will unlock scientific and medical discoveries that can improve lives around the globe.”

At Weill Cornell in New York City, the campaign will fund programs such as the construction of a new $650 million, 350,000-square-foot Biomedical Research Building in the vicinity of the Medical College. This new facility will double Weill Cornell’s existing research space, accommodating more laboratories and scientists to accelerate biomedical discoveries. The building will be designed with laboratories in an open layout to foster communication and collaboration among scientists.

The campaign will also fund new translational and clinical research programs focused on global health and infectious disease, cancer, cardiovascular and neurodegenerative disorders, diabetes and metabolic diseases, reproduction and fertility, aging, and strategic scientific methods such as stem cell and developmental biology. “We have our work cut out for us,” Mr. Weill said. “But we are poised for greatness.”
Special Issue

8 MIND + MACHINE
The Institute for Computational Biomedicine uses processing power to explore the body’s complexity.

11 IN SIGHT
Vision researchers led by Dr. Enrique Rodriguez-Boulan track a treatment for macular degeneration.

13 FIND YOUR NICHE
Shahin Rafii and colleagues explore the relationship between stem cells and their environment.

16 ELDER HOSTILE
At the Center for Aging Research, geriatric medicine expert Dr. Mark Lachs battles abuse of senior citizens.

18 SOCIAL SCIENCE
In the lab of pharmacologist Dr. Lorraine Gudas, a strong collaborative environment is key.

21 MIND FULL
Dr. David Silbersweig uses imaging technology to unlock the secrets of mental illness.

24 DOUBLE DUTY
Graduate School Dean David Hajjar balances his roles as administrator and researcher.

28 TAMING TB
Immunologist Dr. Carl Nathan fights tuberculosis by harnessing the body’s own defenses.

30 BE PREPARED
Tularemia is a potential bioweapon—and microbiologist Lynda Pierini is trying to disarm it.

31 THE ENEMY WITHIN
The Hidden Cancer Project aims to catch the disease when it’s still lurking in the genome.

34 BLOOD WORK
Dr. Katherine Amberson Hajjar studies the relationship between annexins and human disease.

36 SMALL WORLD
Biochemist Dr. Frederick Maxfield examines a basic but vital question: How do cells work?

2 MESSAGES
Comments from President David Skorton and Dean Antonio Gotto

4 FROM THE BENCH
A potential breakthrough in lung cancer diagnosis, the genetics of depression, a better sleep aid, what comes after bariatric surgery, and more

39 ANNUAL REPORT
Statistics and donor lists for 2006

On the cover: Acute promyelocytic leukemia cells from a patient with excessive annexin 2. (See page 34.)
A Special Message from the President of Cornell University

An Ivy League university and the land-grant university for the State of New York, Cornell University is known for its collaborative, interdisciplinary culture, and the breadth and depth of its research enterprise. More than ever before in its history, Cornell is drawing on the combined strength of its Weill Cornell Medical College and its Ithaca campus to improve human health through pathbreaking basic and translational research.

One of the early success stories to come from intercampus collaboration is the development of biodegradable artificial skin for burn victims as the result of collaboration between a surgeon at Weill Cornell and a professor of textiles and apparel at the Ithaca campus. Spurred by a small grants program funded jointly by the Weill Cornell Medical College and Cornell University in Ithaca, and guided by faculty committees whose membership spans both campuses, Cornell is developing collaborations in several areas that offer exceptional promise: biomedical engineering, nanomedicine, and systems biology; multidisciplinary approaches to cancer biology; chemical biology and experimental therapeutics; and global health and infectious diseases. In addition, graduate student linkage programs are beginning to provide opportunities for graduate students to travel between Ithaca and New York City for study and research.

Cornell’s intercampus collaborations received a significant boost in October, when New York State Governor George Pataki announced a $10 million grant from the state to benefit both the Ithaca and Weill Cornell campuses, with the intent of enabling Cornell to contribute even more substantially to the state’s stature as a leader in biomedicine, biotechnology, and other dynamic high-technology fields.

As someone who has faculty appointments on both campuses, I am convinced that there are tremendous advantages to be gained through intercampus collaborative research and graduate education. I invite you to explore this issue of Weill Cornell Medicine to discover some of the groundbreaking research being conducted at the Medical College and the Graduate School of Medical Sciences. The collaborations among researchers on the New York City and Ithaca campuses—which are enabling Cornell to expand knowledge of life processes and to make transformative contributions to advancing health and combating disease—will be featured in an upcoming issue.

—David J. Skorton, MD
The Science of Healing

Improving the human condition through research

This special issue of Weill Cornell Medicine magazine focuses on the important and extraordinary work being done by the talented researchers and scientists in our Weill Cornell Graduate School of Medical Sciences. Led by Dean David P. Hajjar, the Graduate School now ranks as one of the top research institutions in the country. True to the Cornell spirit, our graduate students, researchers, and faculty are leaders in the advancement of the basic sciences, and thus will help shape the future of medicine and the improvement of the human condition. In the pursuit of this essential goal, we are fortunate to have the Sloan-Kettering Institute and the Rockefeller University as our neighbors and partners.

As noted by President David Skorton, a fellow physician, in his accompanying message, the call for greater intercampus collaboration between Weill Cornell Medical College and Ithaca has created an invigorating sense of new possibilities—and the year ahead promises even more exciting innovations, initiatives, and breakthroughs to deliver on our goals of unexcelled patient care, research, and education.

In order to strengthen the bridge being built between the Ithaca and the New York City campuses, we have launched a massive—and crucial—capital campaign that seeks to raise more than $4 billion in the next five years to support the students, faculty, and facilities of Cornell University. Just over $1 billion will go to the Medical College, including funding for a proposed research and basic science building to be built near our Upper East Side campus. Gifts to the campaign will also help us recruit the most talented and creative researchers around the world to bolster our talented faculty.

As we take the first steps in this campaign, our tripartite mission of education, research, and patient care can be seen with more clarity than ever. I am confident that the generosity of all the alumni, friends, and supporters of Weill Cornell Medical College will bear fruit in research that will benefit not only our local population but people around the world, especially those in developing nations.

Some 225 miles may separate Ithaca and New York City, but this will not deter us from building a true collaborative environment that will allow us to deliver on our promise of bringing research “from bench to bedside” as quickly as possible.

—Dean Antonio M. Gotto Jr., MD

Battling bladder cancer: Pharmacologist Dr. Lorraine Gudas is studying the expression of an antibody called LRAT, found in a normal organ (above) but absent in an invasive tumor (below). Story on page 18.
Leading a Revolution in Lung Cancer Detection

Early detection of tumors can increase survival rates in lung cancer patients so dramatically that it could alter the way we think about the disease, Weill Cornell researchers have reported. The article in the October 26 issue of the *New England Journal of Medicine*, which chronicled the results of a long-term study by radiology professor Dr. Claudia Henschke and colleagues, made headlines around the world, including a front-page piece in the *New York Times* and coverage on network evening newscasts. Although some have taken issue with the findings, the work could spark a revolution in the way the disease is treated—and sharply reduce its mortality rate.

Each year, about 160,000 Americans die of lung cancer, more than the death toll for colon, breast, and prostate cancers combined. Because the disease is often detected late in its progression, it presently has a five-year survival rate of just 14 percent. The study, launched by Weill Cornell researchers in 1993 and eventually comprising nearly 32,000 patients and thirty-eight institutions in seven countries, examined the effectiveness of an annual low-dose CT scan of the lungs—roughly akin to a mammogram for breast cancer prevention—as a way to detect cancers early in people at higher risk for the disease. (Most participants were smokers, former smokers, or people exposed to secondhand smoke or occupational hazards such as asbestos.) It found 484 cases of lung cancer, 412 of which were at Stage I—the only stage at which patients have a high likelihood of a surgical cure.

The Stage I patients who declined treatment all died within five years. But those treated with surgery had a ten-year survival rate of 92 percent—a vast improvement from the odds without the scans. “We believe this study provides compelling evidence that CT screening for lung cancer offers new hope for millions of people at risk for this disease,” says Henschke, the study’s lead author and chief of NewYork-Presbyterian’s chest imaging division, “and could dramatically reverse lung cancer death rates.” The new diagnostic power is the product of technological innovations that allow the detection of much smaller tumors: although a CT scan once yielded only thirty images, current methods have increased that number to 600, and submillimeter “slicing” can now be applied to the entire chest in a single breath-hold. The scans, which are not yet considered standard and therefore unlikely to be covered by insurance, cost $200 to $300.

Henschke is the author of the general-interest book *Lung Cancer: Myths, Facts, Choices—And Hope*, published by W. W. Norton in 2002. In July, she made headlines with another finding: that women are almost twice as likely to develop lung cancer as men, but are also more likely to survive it. Those results, published in the *Journal of the American Medical Association* in July, were based on a study of nearly 17,000 U.S. smokers and former smokers.
Widening the Arsenal Against Bioterror

Two potential bioterror agents may become far less deadly, thanks to work by Weill Cornell virologists. Hendra and Nipah are related zoonotic viruses that can spread from their natural reservoir in fruit bats to other species, including humans. The mode of transmission remains unclear, but it’s thought to be relatively easy—either via close contact with an infected host or inhalation of microscopic pathogens. Infection often leads to fatal encephalitis.

In October, Weill Cornell researchers reported in the *Journal of Virology* that, by tweaking a peptide related to parainfluenza virus, they may be able to prevent Hendra and Nipah from infecting human cells. “The goal,” says pediatrics, microbiology, and immunology professor Dr. Anne Moscona, “has been to have some kind of drug like this that could be stored at key points around the world, ready for mobilization in case of an outbreak.”

Nipah first emerged among pigs, and then humans, in Southeast Asia, while Hendra was found among horses and their handlers in Australia. Both have been included as potential bioweapons on the National Institute of Allergy and Infectious Diseases’ Biodefense Research Agenda.

In studying the drug’s mechanism, researchers engineered a “knockout” mouse that lacked the alpha-4 receptor; when administered gaboxadol, the mice remained awake, while their normal counterparts were sedated. In contrast to the “on/off” quality of alpha-1, the alpha-4 receptors are thought to cause specific neurons in the thalamus to fire at a slow, regular rhythm; that pattern, known as tonic inhibition, sends the brain into restful, slow-wave sleep. If the findings are correct, it would make gaboxadol the first hypnotic to work via this mechanism, therefore mimicking natural sleep.

According to the National Sleep Foundation, nearly 60 percent of Americans have insomnia at least a few nights a week, and as many as 25 percent say they have used sleep medica-
Patients suffering from depression long for immediate relief—but finding the right medication is often a months-long process of trial and error. However, researchers led by psychiatrist Dr. Francis Lee may have found a genetic reason why many patients don’t respond to certain drugs, and the discovery could make treating depression a more exact science.

In a paper published in *Science* in October, researchers at Weill Cornell and the Rockefeller University describe the potential basis for a diagnostic test: a variant in the gene that encodes a protein called Brain Derived Neurotropic Factor (BDNF). Patients with the variant gene would be unlikely to respond to selective serotonin reuptake inhibitors—the most commonly used class of antidepressants, which includes Prozac, Celexa, Paxil, and Zoloft.

Their experiments included work with mice engineered to have the BDNF variant. Engineered and normal mice were treated with Prozac and put in stressful settings; those without the variant demonstrated less anxiety, while the engineered mice were much less responsive to the drug.

DNA & Depression

Patients suffering from depression long for immediate relief—but finding the right medication is often a months-long process of trial and error. However, researchers led by psychiatrist Dr. Francis Lee may have found a genetic reason why many patients don’t respond to certain drugs, and the discovery could make treating depression a more exact science.

In a paper published in *Science* in October, researchers at Weill Cornell and the Rockefeller University describe the potential basis for a diagnostic test: a variant in the gene that encodes a protein called Brain Derived Neurotropic Factor (BDNF). Patients with the variant gene would be unlikely to respond to selective serotonin reuptake inhibitors—the most commonly used class of antidepressants, which includes Prozac, Celexa, Paxil, and Zoloft.

Their experiments included work with mice engineered to have the BDNF variant. Engineered and normal mice were treated with Prozac and put in stressful settings; those without the variant demonstrated less anxiety, while the engineered mice were much less responsive to the drug.

Tallying the Costs of HIV

Total lifetime medical care for a patient with HIV will cost an average of $618,900 under current standards, according to a study by researchers at Weill Cornell and several other institutions. In the November issue of the journal *Medical Care*, the researchers reported the results of the study, which was intended to guide future funding allocations. They found that average monthly care costs are $2,100—70 percent of which goes to medications—with a life expectancy of 24.2 years from the time of diagnosis. “Policymakers need accurate and up-to-date predictions of the future expense of HIV treatment if they seek to ensure broad access to high-quality care,” says Bruce Schackman, chief of the Division of Health Policy and the study’s lead author. “If they rely on outdated cost information, treatment programs will be underfunded and the economic value of HIV prevention will be understated.”

The lifetime per-person cost of HIV care, the study found, is comparable to the estimated cost of care for a woman under 65 with cardiovascular disease: both have long life expectancies with correct medical management. When costs are discounted to reflect the fact that they will be covered in the future, the projected lifetime figure is actually $385,200 in today’s dollars, and the expense that can be avoided by preventing each HIV infection is $303,100.

With the advent of new drug therapies, expected outcomes for HIV patients have changed radically over the past decade. In 1993, the study reports, the life expectancy for an infected adult without symptoms was just 6.8 years. The Centers for Disease Control and Prevention estimates that about 40,000 Americans become infected with HIV each year. Of the roughly 1 million HIV-positive people in the U.S., one-fourth are unaware that they are infected.

Shape Shifting

Nearly a third of American adults are obese, and 5 percent are considered morbidly so. Each year, some 170,000 of these severely overweight patients undergo gastric bypass (or bariatric) surgery. Although the operation can offer hope for people who’ve long struggled with their weight, it’s rarely the end of the process. “Massive post-surgical weight loss leaves most patients with unsightly excess folds of skin and fat,” says assistant professor of surgery Dr. Jason Spector, “and in some ways the patient can actually look worse, not better.”

For many people, the next step is to undergo body contouring, where surgeons remove excess tissue and sculpt the physique. An emerging field, body contouring remains unfamiliar to many non-specialists—a fact that prompted Spector and two colleagues at New York University to author a paper on the subject. Their “state of the science” review was published in the November 7 issue of the *World Journal of Gastroenterology*.

In 2005, nearly 56,000 bariatric surgery patients underwent body contouring procedures—including tummy tucks, breast augmentation, and lifts of the thighs, buttocks, and arms. Spector notes that doctors typically recommend such procedures not be performed until a patient’s weight has stabilized for at least three to six months. Although complications are rare, they include blood loss, clots, and abdominal hernias. “When it’s over, patients generally tell us that every step along the way was more than worth it,” Spector says. “They say they feel healthier, more attractive, happier. And for us, that’s the goal.”
Hope for Paralysis Patients

The discovery of a molecular “missing link” that drives nerve cell growth has brought researchers a step closer to repairing injured spinal cords. The work, reported in the October issue of Nature Neuroscience, concentrates on an enzyme called soluble adenylyl cyclase (sAC), which has been found to spur the growth of nerve endings in rat embryos. The research, which was funded in part by the Christopher Reeve Paralysis Foundation, could also lead to breakthroughs in the treatment of certain developmental disorders or a way to repair damage to peripheral nerves caused by diabetes.

The enzyme sAC was first identified eight years ago by two Weill Cornell pharmacologists, Dr. Jochen Buck and Dr. Lonny Levin, co-authors on the Nature Neuroscience paper; they also discovered that sAC is essential to the activation of a biochemical “growth switch” called cAMP. (High levels of cAMP are present during fetal development, but only in miniscule amounts in adult nerve cells.) In their work on nerve cells from embryonic rats, the researchers found that when sAC was removed, developing axons suddenly failed to grow. “In fact,” says lead author Dr. Samie Jaffrey, associate professor of pharmacology, “without sAC, these embryonic axons began to resemble axons in injured adult spinal cords—axons that were incapable of growth.” Then they reversed the experiment by flooding nerve growth cones with sAC—and axonal growth accelerated.

The team’s next step will be to introduce sAC to adult axons via a harmless virus genetically designed to zero in on growth cones and express sAC in large quantities. “With this new piece of the puzzle, we can begin serious work on introducing sAC directly into damaged spinal cords, where we hope it will encourage axons to seek out vital new connections,” says Jaffrey. “The ultimate goal is a treatment that can prevent paralysis or restore movement to paralyzed individuals.”

Bathroom Break

A combination of two common medications could become the standard therapy for men suffering from overactive bladder (OAB). A major clinical trial has found that tolterodine (sold as Detrol LA) and tamsulosin (Flomax) work better together than either drug does alone. The latter drug helps regulate bladder contractions while the former eases the symptoms of enlarged prostate, thought to be an underlying cause of male OAB.

It’s estimated that 10 million American men aged forty and up suffer from OAB. The double-blind, randomized clinical trial—by researchers at Weill Cornell, the University of Texas Southwestern Medical Center, and the Medical University of South Carolina—involved more than 850 patients treated at ninety-five urology clinics around the country. For twelve weeks, participants received either one of the drugs, both, or a placebo; they were asked to chart their symptoms in diaries, and their urinary flow rates and volume were checked before and after the experimental period.

“A full 80 percent of men with moderate-to-severe OAB—which is characterized by symptoms such as urgent and frequent urination—who received these drugs together reported a real benefit within three months of treatment,” says urology professor Dr. Steven Kaplan, the study’s lead author. “In contrast, patients receiving either tolterodine or tamsulosin alone reported improvements that were little more than those seen by patients on placebo.” The results were published in the November 15 issue of the Journal of the American Medical Association.

Weill Cornell Medicine is now available online. www.med.cornell.edu/publications
Vision quest: A computational analysis of neuronal activity in the visual cortex, carried out in Dr. Jonathan Victor’s laboratory. These types of analyses, which model small cell populations at an abstract level, require hours to days of computer time. They reveal how the timing and distribution of activity across neurons contribute to the representation of visual information—and, ultimately, perception.
he label usually begins “SIDE EFFECTS MAY INCLUDE” and then goes on to detail a litany of undesirable—and sometimes downright alarming—side effects that a medication might cause.

To computational biologist Harel Weinstein, such lists reveal a fundamental flaw in the way medical research has led to these medications. “Today, research takes on a protein involved in a particular diseased state—depression, Alzheimer’s, diabetes—and then the biomedical community and the pharmaceutical firms try to find therapies that modulate that protein’s function to ameliorate or cure the disease,” says Weinstein, director of Weill Cornell’s HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine [ICB]. “The problem is that even if this is partially successful—if you block or activate the protein—because of its new state it triggers a whole set of totally unforeseen consequences. Sometimes they’re just side effects and sometimes they make the patient worse.”

To make the best possible use of the new discoveries from biomedical research, says Weinstein, researchers will have to shift their focus away from treating the components of a biological system as though they were static and look more deeply into the dynamic relationships among those components, recognizing that real understanding depends on it and that any unknowing intervention could ricochet throughout an organism. “Unless we think about integration,” says Weinstein, “we won’t understand how the body functions and will not achieve therapies that don’t mess us up while they try to make us better.”

Integrating the copious volume of data that researchers have already collected far exceeds the analytical capacity—and life-spans—of mere mortals. So Weinstein and his colleagues have turned to mathematical equations, transforming biological data into sophisticated electronic models that reveal the interactions among genes and individual molecules, among molecular assemblies and cellular function, and among cells and their assembly in organs. “The overall vision of our institute is to use what we call multi-scale systems analysis to address physiological systems—the basis of medicine,” says Weinstein. “The aim is to understand how human physiology works in healthy and diseased states, and to use this understanding to design means for disease prevention and therapy.”

ICB researcher Colleen Clancy focuses on the relationship between electrical disorders—such as epilepsy, which affects more than 2 million Americans, and cardiac arrhythmia, the leading killer in the developed world—and specific mutations in genes encoding ion channel proteins in the cell. “The biggest challenge
effectively transform individual physiologic data points into meaningful computer models. “When we design a research question, we frame it knowing the limitations of our computers,” says Victor, the Plum Professor of Neurology and a member of the ICB steering committee. “It would be no trouble to formulate an interesting question that would take more than the life of the universe to solve.”

The trick, then, is creating equations that streamline computations, glossing over inconsequential details and focusing time and processing power on the most relevant features of the information being analyzed. “One of the biggest issues in modeling is choosing the appropriate level,” says Victor. “Modeling at the molecular level may require hours of computer time to understand how a process evolves over tiny fractions of a second. Modeling at the level of neurons and networks—billions and billions of molecules—sacrifices some detail, but often will allow an understanding of how a process evolves on time scales relevant to behavior.”

At the ICB, researchers don’t have to restrict themselves to just one level of modeling. “We try to achieve a complete, quantitative representation of these organ systems from the most fundamental genomic level all the way to whole-system behavior, which in the case of the brain means human behavior,” says Weinstein, whose own work investigates the genetic and molecular function of g-protein coupled receptor molecules, the target of 50 percent of all pharmaceutical interventions, and proteins known as transporters, which are targeted by antidepressants such as Prozac.

“When you trigger the receptor, you trigger a new state in the cell,” he explains. “We needed to understand the sequence of events produced in the cell’s signaling pathway by that trigger, and represent it quantitatively as a transformation of the components; this necessitates looking at all these components together as an assembly, and following their fate in the cell in the space and time dimensions.”

Ultimately, says Weinstein, the ICB draws its strength both from the multitude of levels at which its researchers conduct their analysis and their diversity of academic backgrounds—from electrical engineering and computer science to physics, biology, chemistry, mathematics, and genetics. “We have a lot in common even though we work at different scales,” says Weinstein. “The conceptual framework of integration and multi-scale analysis—understanding the behavior of the entire system as it emerges from that of its components—is what brings us together.”

— Sharon Tregaskis
Can you read this? Thank your retinal pigment epithelium.

The RPE, as it’s known, plays a vital support role in the eye: it’s the retina’s trash compactor. This function and other RPE functions are essential for the survival of the light-sensitive cells in the retina, the photoreceptors. These cells are damaged by light exposure, which is why nature has developed a mechanism to replenish the photoreceptors every ten days. This is done in daily bits.

When we open our eyes in the morning, we shed about one-tenth of each photoreceptor, making room for new growth. It’s up to the RPE to consume this cellular debris—and with each RPE cell in charge of about thirty photoreceptors, it’s a full-time job. “It’s a big breakfast—imagine eating an amount of material equivalent to your weight every morning,” says Dr. Enrique Rodriguez-Boulan. “That’s what these cells have to do their entire lives.”

But when the RPE falls down on the job, researchers believe, it can lead to big trouble: diseases like age-related macular degeneration (AMD) and retinitis pigmentosa. Rodriguez-Boulan, director of research at Weill Cornell’s Dyson Vision Research Institute, focuses on AMD, which affects about a third of Americans over the age of seventy. There is no effective treatment for the condition, which

Dr. Enrique Rodriguez-Boulan and his colleagues are tracking a potential treatment for a common cause of blindness.

Eye for an eye: The lipofuscin component A2E (red) causes abnormal accumulation of cholesterol (blue) in human RPE cells in culture.

Provided by Dr. Silvia Finnemann
leads to sharply decreased vision and, ultimately, blindness—and as the nation’s population ages, the number of cases will only increase. “It’s a devastating disease,” Rodriguez-Boulan says, “and it affects a very large segment of our senior population.”

Rodriguez-Boulan and Dr. Silvia Finnemann, a Dyson faculty colleague, hope they’re on the trail of a way to stop AMD. They believe that a lipid mix called lipofuscin—and, more specifically, a compound within it known as A2E—is responsible for compromising RPE’s ability to do its good work. Lipofuscin accumulation is a normal result of human aging; in living eyes, the lipid shows up under fluorescent light as many bright spots, says Finnemann.

There appears to be a correlation between the amount of lipofuscin and the level of visual impairment in AMD patients—up to the point where the retinal cells are completely destroyed, and the lipid along with it—but why the disease strikes some people and not others remains unclear. “There are several new findings in the area of macular degeneration that suggest in the next five to ten years we may have an idea of how the disease is generated,” says Rodriguez-Boulan. “That’s an important step toward getting a treatment.”

One of the reasons the RPE cells are vulnerable to getting clogged with lipofuscin is that—like neurons—they don’t divide. The body’s supply is finite and doesn’t regenerate or refresh itself. “Our cells in the intestine divide in such a way that the entire mucosa is replaced every three days,” Rodriguez-Boulan notes. “The cells in the skin divide so that every three weeks we replace all of them. RPE cells, by contrast, get no substitutes in the garbage-munching game: the original cells have to keep up their work day after day. “Essentially, it’s like running a marathon with a backpack full of stones,” he says. “The cells don’t perform their function properly because they are accumulating lipofuscin in their lysosomes that prevents them from digesting the photoreceptor residue.”

Rodriguez-Boulan and Finnemann are still in the process of convincing the vision community that lipofuscin and A2E are directly detrimental to the retina. Over the past five years, Finnemann says, they’ve come a long way—and recent studies carried out by Aparna Lakkaraju, a postdoctoral fellow at the Dyson Institute, suggest that perturbation of the lysosomal function by lipofuscin may lead to accumulation of cholesterol in RPE. This could, in turn, promote the initial development of the disease.

“Ultimately, we hope to actually rejuvenate a patient’s eyes by providing a mechanism for the RPE to expel or digest lipofuscin, and therefore generate a clean environment,” Finnemann says. “If we are able to decrease the lipofuscin accumulation—let’s say, when people reach retirement age—we could significantly prolong normal human vision. That would be a huge step forward.”

— Beth Saulnier
One of the wonders of the human body is its continual process of self-renewal, made possible by stem cells. Stem cells get instructions for renewal from their surrounding microenvironment, or niche; located in specific anatomic areas, these niches keep the stem cell alive and self-renewing while preventing unbridled growth. Understanding the exchange of molecular signals between stem cells and their cellular niches, a process called the stem cell-niche interaction, is a critical step toward harnessing stem cells’ therapeutic potential. And at the moment, it’s at the forefront of nearly every path of stem cell research.

Every organ in the body contains adult stem cells responsible for maintaining tissues and repairing damage. As scientists learn more about stem cells and their niches, however, they are discovering that some stem cells may also play a harmful role: while they are responsible for repairing damaged tissue, they may also contribute to the growth of tumors and tumor metastasis.

This has become increasingly clear in the case of hematopoietic stem cells—adult blood stem cells found primarily in the bone marrow that are responsible for producing blood cells and, in part, for blood vessel growth. Blood stem cells have been studied more than any other adult stem cell over the last fifty years and are currently the only adult stem cells used in clinical trials. But a recent trio of European studies published in the New England Journal of Medicine, in which blood stem cells were injected directly into the heart to repair coronary artery damage, yielded mixed results, illustrating that there is a great deal more work to be done.

Scientists at Weill Cornell have been mapping the stem cell-niche interactions that control blood stem cells in ever-increasing detail, pointing out the ways in which bone marrow-derived blood stem cells can be used to promote the regeneration of blood vessels and to prevent cancer metastasis. Much of the work is done in the lab of Shahin Rafii, director of the Ansary Center for Stem Cell Therapeutics. Although tissue regeneration and cancer metastasis may appear to be disparate research interests, they have an elegant biological overlap. “One might say that a cancer is like a wound that doesn’t heal,” Rafii says. “Cancer is regeneration gone haywire.”

A stem cell’s ability to differentiate, or morph into specific cells, is regulated by proteins sent to a dormant

find your niche

Understanding the relationship between a stem cell and its environment is the key to unlocking its power.

Inside job: Researchers are studying how stem cells interact with the niches where they’re found in the human body.
stem cell’s niche. Within this niche, the stem cell receives instructions about when and where to differentiate into more mature cells. Blood stem cells have two anatomic niches: they are present in both the bone marrow (the osteoblastic niche) and in circulating blood (the vascular niche). Rafii’s lab has been describing signal pathways at both locations.

Working with Barbara Hempstead, a professor of medicine specializing in nerve growth factors, and David Lyden, associate professor of pediatrics and cell and developmental biology, among others, Rafii is using mouse models to describe the vascular niche where blood vessel growth takes place. When new vessels grow in an adult, either to heal an injury or nourish a tumor, growth factors and enzymes are released at the site, unleashing a signaling cascade that wends its way to the bone marrow. These signals recruit blood progenitor cells (more mature, partially differentiated blood stem cells capable of forming all of the different types of blood cells) as well as endothelial progenitors (cells that will ultimately form the lining of the new blood vessels) from the bone marrow and into the bloodstream. These two progenitor cell groups eventually move to the wound or tumor site and work in concert to stimulate new blood vessel growth.

“Angiogenesis is a partnership between the local blood vessels and these bone marrow-derived progenitor cells that allows blood vessels to regenerate,” Hempstead says. “Nature has developed a complex and highly orchestrated program utilizing different growth factors and enzymes that it has already figured out as the best way to help blood vessels grow. Our job is to understand nature’s program and use it to deliver an optimal cocktail of growth factors to stimulate blood vessel growth in the injured limb or heart.”

Although Rafii and Hempstead have successfully regrown blood vessels in muscle tissue of mice, and are currently describing the complex pathways involved, they face many obstacles. “If we isolate any type of stem cell—brain, blood, or embryonic—and we want to cultivate them in tissue culture by adding any known growth factors, it is impossible to keep them self-renewing for more than a few weeks,” Rafii says. In other words, stem cells are not self-sufficient; they need instructions from surrounding tissues within their niche to tell them when to divide, to grow, or to hibernate. Without this regulation, stem cells would multiply indefinitely and uncontrollably, like tumor cells. It is within the context of cancer growth and tumor metastasis that the more harmful role of blood stem cells is played out. The more scientists understand how and when a stem cell receives instructions for growth, the closer they will be to exploiting stem cells’ positive potential.

In the late 1880s, the English surgeon Stephan Paget proposed the “seed and soil” theory of cancer metastasis, arguing that metastasis does not occur by chance but requires the appropriate cancerous seed planted properly in distant soil primed for tumor growth. At the time, he urged scientists to study “the nature of the seed,” but noted that “observations of the properties of the soil may also be useful.” Most attention has
been placed on understanding “the seed,” and scientists have only recently begun to understand the “soil” side of the equation. “This is one area in medicine and science where much remains to be learned,” Lyden says. “Once a patient has metastatic disease like pancreatic cancer or metastatic colon cancer, treatments are less effective.”

Several years ago, Rafii and Lyden were publishing collaborative work on blood stem cells with two therapeutic possibilities: promoting blood vessel growth in damaged organs or tissues, and halting blood vessel growth within tumors with the aim of eventually starving metastatic tumors. In describing the growth factors and enzymes involved, Rafii and Lyden noted something startling: stem cell levels in circulating blood spiked in animal cancer models, and some of these stem cells eventually found their way to future sites of metastasis.

In a paper published in *Nature* late last year, Rafii, Lyden, and colleagues including Dr. Rosandra Kaplan, assistant professor of pediatrics, showed that blood progenitor cells were recruited from the bone marrow by growth factors sent from primary tumors; these progenitor cells then traveled to sites of future metastases, where they set up pre-metastatic niches—the “soil”—where incoming tumor cells could thrive. They also found that a monoclonal antibody could block reception of the initiating growth factor, called VEGF, and treatment with this antibody halted the formation of these pre-metastatic niches and stopped metastasis altogether. In short, they found a way of making sure the soil could not nourish the seed. “For the first time,” Lyden says, “we’re identifying the critical factors that allow tumor metastases to thrive.”

The development holds diagnostic promise as well, which Lyden believes may ultimately be even more important. Now that they have identified the specific blood stem cells that function in pre-metastatic sites, the sharp increase of these cells in the blood prior to and during metastasis can be measured. In the near future, Rafii, Lyden, and their colleagues will begin measuring the amount of these cells in the circulating blood of cancer patients undergoing surgery, radiation, and chemotherapy in an effort to better plan the patient’s ongoing treatment. “We need to find the time when these cells are important—early on, and perhaps even late in the process, when these bone marrow stem cells associate themselves with tumor sites,” Lyden says. “We believe that by targeting these stem cells, we can really change the course of metastasis.”

— Gabriel Miller

Stem cell pioneers: Medicine professor Barbara Hempstead (above) specializes in nerve growth factors. Dr. Shahin Rafii (far right), director of the Ansary Center for Stem Cell Therapeutics, calls cancer “regeneration gone haywire.”
The elderly man came into the hospital alone one night in October, disheveled and disoriented. The resident on duty presented the case to Dr. Mark Lachs, with a differential diagnosis of Alzheimer’s disease, depression, and blood on the brain. “And then he said, ‘This could be elder abuse and neglect. The family was nowhere to be found to provide a history—they just dropped him off,’ ” Lachs recalls. “I was delighted.” It wasn’t that Lachs was glad about the man’s sorry condition, of course; the longtime researcher on aging was simply thrilled that the resident had thought to include abuse as a possibility. “One of my goals in life is to make physicians aware,” says Lachs, who is director of Weill Cornell’s Center for Aging Research and Clinical Care, co-chief of the Division of Geriatric Medicine, and the Irene F. and I. Roy Psaty Distinguished Professor of Clinical Medicine.

At the Center, Lachs and his colleagues work to improve seniors’ quality of life by integrating research, teaching, and clinical care. The Center holds regular symposia, mentors junior researchers in aging, and encourages Weill Cornell medical students to pursue careers in geriatric medicine. Lachs is also a co-director of the Cornell Institute for Translational Research in Aging (CITRA), a collaborative effort of the Manhattan, Westchester, and Ithaca campuses with close ties to senior service providers in New York City. Current research topics by pilot grantees in that program include non-drug approaches to back pain in older people, the psychology of seniors who horde possessions at the expense of their well-being, and the effect of the Meals

Dr. Mark Lachs investigates—and works to prevent—abuse and neglect of senior citizens.
on Wheels program’s switch to frozen foods rather than daily deliveries of fresh meals.

But Lachs’s abiding passion is the prevention of elder abuse and neglect. Perhaps the nation’s most prominent physician-researcher in the field, he has been studying the subject for nearly twenty years, since seeing his first cases as an intern. In 1998, he and Ithaca-based gerontologist Karl Pillemer and colleagues published a seminal paper in *JAMA* that dramatically demonstrated elder abuse’s potentially fatal consequences: at the end of thirteen years of follow-up in a longitudinal study of about 3,000 older people in New Haven, Connecticut, 41 percent of the subjects who had not experienced abuse were still living—compared to just 9 percent of the abuse victims.

Prior to the study, Lachs notes, such deaths were often ascribed to chronic conditions like cancer, heart disease, or emphysema. “All forms of family violence get under-reported,” says Lachs, who holds a master’s of public health as well as an MD. “We think that elder abuse is particularly under-reported, and here’s the reason: if you’re a kid who comes to school with a black eye, you’re in the system. If someone comes to work wearing dark glasses, a co-worker might ask what’s going on. But in older people, because of social isolation, it’s often invisible.”

One of the few opportunities to recognize abuse, Lachs says, may come during a visit to the doctor—but the abuser is often the patient’s primary caretaker and the very person accompanying him or her to the physician’s office. Since victims may be reluctant to speak up, Lachs says it’s vital that doctors keep the possibility of abuse in the forefront of their minds. “Pediatricians have adopted the issue of child abuse and made it theirs,” he says. “They’ve integrated it into the medical curriculum; in pediatrics textbooks, you’ll find ‘child abuse’ next to ‘leukemia.’ It’s one of the finest examples of physician social advocacy. Internists have just failed with respect to the same problem in older people.”

Mistreatment may be verbal as well as physical, or it may constitute neglect in the form of withheld food, medication, or personal care. It could also take the form of financial exploitation, where a caregiver gets control of a senior citizen’s bank accounts or credit cards and uses them for personal gain. With the graying of the Baby Boomer generation—and wealth increasingly concentrated among older Americans—that type of abuse is seeing “explosive” growth, Lachs says. “There’s a myth we dispelled in our research that an elder abuse victim is typically dependent upon an adult child for housing, when in fact it’s quite the opposite: often it’s an underachieving adult child living in the home of an older person.” Sometimes, he says, siblings are relieved that this “underachiever” is willing to assume the responsibility to care for an older parent, and they may be reluctant to acknowledge the neglect.

Elder abuse and neglect of all types are more common than one might think: studies by Lachs and other researchers have consistently found the rate in Western cultures to be between 3 and 5 percent. “If the prevalence is 5 percent,” he says, “that means that one in twenty older people seen by an internist will be a victim.”

— Beth Saulnier
Pharmacologist Dr. Lorraine Gudas believes that a successful lab must be catalyzed by personal chemistry.

In her lab, Dr. Lorraine Gudas is expanding the role of pharmacology in cancer treatment, with a focus on the therapeutic promise of the vitamin A derivatives known as retinoids. Running a successful lab, however, also involves a more unconventional form of chemistry: finding the right mix of personalities. “People sometimes think of scientists as off in a dark corner working by themselves, but it’s actually a pretty social environment,” says Gudas, a professor of pharmacology and chair of the graduate program in pharmacology since 1992. “So whenever I’m hiring someone new, they may be brilliant, but if they can’t interact with other people, it can really disrupt the lab. I actually think about that a lot.”

The lab was humming on a recent fall afternoon, as the researchers moved smoothly through their tasks, some of them grooving to iPods tucked into the pockets of their white coats. The cell culture incubator was well-stocked with live cell cultures, each one neatly labeled with a researcher’s first name; every few paces through the lab’s close but comfortable quarters, a scientist was engrossed in a different phase of his or her project. Says Gudas: “It’s important that they know how to share and cooperate and help each other.”

The two dozen scientists working under Dr. Gudas are identifying and analyzing the genes that vitamin A regulates, in an effort to understand how it elicits changes in various cells—including cancer cells. The vitamin’s use as an anti-aging and anti-acne agent (sold as the drug Retin-A) in topical creams is well-known, but in recent years it has been found to be extremely effective in fighting cancer, treating one type of leukemia with retinoic acid (a bio-active form of vitamin A) has increased the survival rate from 20 percent to more than 80 percent. In attempting to expand those results to solid-tumor cancers, Gudas, with her co-workers and collaborators, has been tracking the extraordinary machinations of vitamin A in the body, specifically in stem cells and epithelial cells, in the hopes of unlocking its anti-carcinogenic potential.

Humans don’t produce vitamin A themselves but obtain it primarily from dairy products, vegetables (in the form of beta carotene), and supplements. “There is a correlation between people who are partially vitamin-A deficient and slightly higher incidences of cancer,” Gudas says. “Our hypothesis is that vitamin A causes stem cells to become more differentiated cells, and that without appropriate levels of vitamin A, stem cells may just keep dividing and growing, without maturing properly. That could ultimately lead to cancer.” It is those stem cells—whose potential to become specific cells, like those of the skin or muscle, has not yet been realized—that may hold the answer to how cancer develops. “We knew when I started my lab that vitamin A could influence gene expression,” Gudas says. “We’ve also been working on stem
Targeting tumors: Sections show human bladder tumors of various stages, incubated with the LRAT antibody. (1) A normal bladder stained to show LRAT; (2) an unstained control; (3) expression of LRAT in a superficial tumor; (4) a superficial tumor showing that LRAT levels are higher in the normal cells of the adjacent epithelium (upper arrow) than in the cancer itself (lower arrow); (5) even lower LRAT levels are seen in more invasive tumors; and (6) no LRAT is seen in a specimen from an invasive tumor.
cells for a long time—it’s trendy now, but we’ve been doing it for almost twenty years.”

Using mouse embryonic stem cells, Gudas and her colleagues compared the types of
genes expressed in cells treated and untreated with retinoic acid, and they were able to
determine which genes could be used as good “markers” for normal function in adult
stem cells. Struggling to understand how and why specific genes react to vitamin A is
part of unraveling the process wherein stem cells begin to behave abnormally, and at
which point that abnormality might be corrected.

Two of the lab’s “star” genes are a transcription protein known as REX-1, which is
found in high levels in stem cells, and LRAT. In healthy cells, the LRAT protein helps the
cell store vitamin A, whereas in cancer cells the LRAT gene is “silenced” and unable to
perform normally. “That silencing occurs somewhere in a long carcinogenesis process,”
Gudas says. “Going from a normal cell to a tumor cell takes many steps—years—so we
have to figure out new ways to deliver vitamin A to the cells or try to restore it to the
tumor.”

Patience is key in working to unravel the mysteries of carcinogenesis, but one of the
rewards for Gudas’s research team is the opportunity to work with other departments to
conduct human trials. Gudas has collaborated most recently with Dr. David Nanus, an
oncologist and clinical co-chief of hematology, testing a combination of retinoic acid and
interferon—as well as retinoic acid and suberoylanilide hydroxamic acid, a drug that
influences gene transcription—on kidney and prostate cancer patients. “We expect all of
the research we’re doing here in the lab to lead to new clinical trials down the road,”
Gudas says, sitting in her office before a bookcase piled high with science texts, “and to
designing better drugs.”

There was a knock at the door—one of several interruptions, phone calls, and pleas
for advice fielded over the course of an hour. A colleague was mildly alarmed and excited
about something she had seen in a cell culture, and requested an extra pair of eyes.
Gudas headed for the microscope.

— Michelle Orange
n the Functional Neuroimaging Laboratory at Weill Cornell Medical College, there are brains everywhere. Pictures, that is: cross-sections of brain images, some resembling color-by-numbers paintings, some implanted with electrodes, some sporting bright neon patches that indicate abnormalities. Co-director David Silbersweig, MD ’86, points out a colored-pencil sketch of twelve disordered brains that sits on his bookcase. “We live and breathe this stuff,” he says.

The seventeen-person lab includes specialists in psychiatry, neurology, radiology, mathematics, behavioral and neural sciences, and computer engineering. It is also part of the Center for Neuroscience of Fear and Anxiety, a multi-institutional research center funded by the National Institute of Mental Health that bridges basic and clinical scientific approaches. “We study the brain at the systems level, which complements the investigations of our basic science colleagues,” says Silbersweig, a neurologist and psychiatrist. Emily Stern, MD ’87, a radiologist and co-director of the laboratory, points out that they are also working on “new methods to detect neural activity in key regions of the brain, including regions that we’ve never had access to before.”

One research team is tracking the substrates of emotional function in a patient suffering from severe epilepsy, via electrodes implanted in his brain for clinical reasons. Neurologist-researcher Tracy Butler, who is performing this work, also studies how psychological disorders manifest themselves differently in the brains
of men versus women. Related to this work, a recent study [on which Xenia Protopopescu, an MD-PhD student in the lab, is first author] has identified and localized changes in emotional circuit function in women across the menstrual cycle and in association with premenstrual dysphoric disorder.

Whatever the topic, all of the lab's experiments make use of neuroimaging techniques, including a relatively new type of MRI that has changed how the brain is studied. The way in which scanning and analysis is done—"it's the numbers behind the pretty pictures that count," says Stern—is always being improved, and the directors work closely with Dr. Hong Pan, the lab's image analysis scientist, in this ongoing process.

Silbersweig started out as a philosophy major, but the leap to neuroscience and psychiatry seemed perfectly logical. "I was always fascinated by how people think and what affects their thoughts and emotions," he says. "That developed into a desire to know and understand the science behind the human mind, in health and disease, and to use that knowledge to help people suffering from mental illness." He and Stern have been at the forefront of this research for a decade, initially for using positive emission tomography (PET) scans in the mid-1990s to identify brain regions active in schizophrenics as they hallucinated, landmark work that has led to new treatment approaches targeting the regions of abnormal activity.

The team's work recently hit a turning point with the use of the blood oxygen level-dependent functional MRI (BOLD fMRI), which tracks the oxygenation of blood to various regions of the brain, indicating neural response and activity. "It's the least invasive method we have of seeing the brain in action while people are in various mental and disease states," Stern says. One of the NIH-funded fMRI studies they are currently conducting examines another major psychotic symptom of schizophrenia, paranoid delusions. Silbersweig and Stern are testing a unified pathophysiological model of fronto-limbic circuit dysfunction in psychotic symptom formation. In new experiments, the lab is working collaboratively to link such imaging approaches with new genetic techniques to identify endophenotypes and to understand the effect of variations in specific genes on the circuit dysfunction.

In a study recently published in the American Journal of Psychiatry, the lab's researchers, including neuropsychiatrist Dr. Jane Epstein, investigated patients with major depression. Volunteers in the fMRI scanner were shown a series of seventy-two words—positive ("success," "heroic"), negative ("worthless," "bleak"), and neutral—that flashed across an LCD screen. While reading each word, the subjects pressed a button to alert the researchers. After emerging from the fMRI, the volunteers read a
list of words—those they had seen, plus an additional thirty-six—and identified the ones they remembered seeing in the scanner. After conducting the fMRI analyses, the research team confirmed their hypothesis that the ventral striatal (nucleus accumbens) region of the brain—which is associated with reward, motivation, and salience—was less activated in the depressed subjects, compared with control subjects. Among patients, the degree of failure to activate the ventral striatum was correlated with their lack of interest in, and participation in, work and other activities, a measure of anhedonia—a core feature of depression.

Silbersweig believes that fMRI results such as these, with appropriate follow-up studies, could eventually lead to alternative therapeutic strategies that more specifically target such brain regions in individual patients. While volunteers are told that the experiments will have no direct effect on their treatment because the research is still in its early stages, helping patients is the ultimate goal. “We are all physicians first and foremost,” Silbersweig stresses. “We want to make our patients’ lives better.” In working toward this goal, Silbersweig and Stern collaborate closely with other clinical scientists in the Department of Psychiatry, including Dr. James Kocsis (on mood and anxiety disorders), Dr. Adam Savitz (on schizophrenia), and Dr. Otto Kernberg (on borderline personality disorder).

After 9/11, Silbersweig, Stern, and lab colleagues including neuropsychologist Dr. James Root decided to expand their studies of anxiety disorders to include post-traumatic stress disorder (PTSD) studies of Manhattanites who had experienced the attacks firsthand. “The subject population for that experiment includes everyone from New Yorkers who barely escaped the Twin Towers to those who were in the city but less directly affected,” Root notes. Almost every volunteer for the post-9/11 study has exhibited some traumatic emotional response when viewing the images associated with the disaster. “By studying the neural mechanisms associated with varying levels of stress,” Silbersweig says, “we are able to test hypotheses derived from animal work concerning evolutionarily conserved fear circuitry, to see how the brain reacts under such circumstances, to better determine who has more risk or resilience, and to lay a groundwork for improved interventions.”

Silbersweig and Stern say they feel fortunate to be part of an expanding field that is unlocking the mysteries of our most complex organ and transforming psychiatric biomedicine. They and their colleagues believe they have only scratched the surface of the uses for fMRI and complementary methods in studying neural activity. “The brain is still relatively uncharted territory,” Silbersweig says, “and it’s our job to map it and to understand its mechanisms in the service of our patients.”

—Neeraja Viswanathan
Flashback to 1981: Ronald Reagan took over the Oval Office, and Raiders of the Lost Ark took over the box office. De Loreans and Rubik’s Cubes were hot, the study of inflammation was not. Most medical researchers weren’t interested in such a basic process of the human body. But David Hajjar, a twenty-eight-year-old biochemist fresh from a postdoc at the Rockefeller University, was betting that inflammation—in the form of herpes infections—had much to tell scientists about how arteries hardened into the condition known as atherosclerosis. And Cornell was betting on Hajjar, appointing him to its faculty that same year.

Flash-forward a quarter century: Today, De Loreans and Rubik’s Cubes are Trivial Pursuit answers, but inflammation has become one of the most important issues in medical science, with researchers around the world racing to figure out its role in everything from heart disease to Alzheimer’s. Hajjar’s focus on inflammation and atherosclerosis proved to be a solid bet: he has found important links between herpes viruses and the metabolic disorders that can lead to cholesterol buildup on artery walls. And Cornell’s hiring of Hajjar turned out to be a sound wager as well: he is not only one of the most well-funded researchers in the history of the Medical College, bringing in more than $150 million in grants over the last three decades, he has also helped to create an institution where scientists at every stage of their careers can thrive.

“The best environment for research is one in which you can walk out into the hall and run into other people doing interesting work and discussing new ideas,” says Hajjar, who has been the...
Frank Rhodes Distinguished Professor and dean of the Graduate School of Medical Sciences since 1997, vice provost of the faculty since 2000, and executive vice dean for research since 2003. "That’s what I found when I came here to study cardiovascular diseases, and it’s what I want to duplicate across the Medical College, in areas like neuroscience and metabolic diseases and genetics. Weill Cornell has been a wonderful place for me, and I want it to be a wonderful place for other researchers, too.”

Every medical school strikes a different balance among the education, research, and clinical missions of their institution. As both a scientist and an administrator, Hajjar has found that those goals are complementary. Collaborations between clinicians and researchers are driving new developments across Weill Cornell, he says, and scientists benefit from being educators, too. "The training of new researchers is a constantly evolving process,” says Hajjar. "It's more than teaching them ‘the scientific method'; it's exposing them to a wide range of issues, from ethics to research compliance to how to train people yourself once you start running your own lab.” Hajjar believes that senior scientists have a responsibility to help the junior members of their labs “sift through everything that is happening in modern medicine and figure out how you personally can make a difference”; at the same time, the fresh perspectives of graduate students and postdocs can help an established researcher remain innovative.

Hajjar’s own lab within the Center of Vascular Biology, which he directs, is home to twelve researchers: junior faculty, postdocs, and technicians. Dr. Ruba Deeb, now an assistant professor in pathology at the Medical College, joined his team as a postdoc in 1998. Deeb credits Hajjar with helping her develop the confidence to pursue her own ideas. “David had faith in my scientific ability, and he allowed me to test myself and see what I was capable of,” she says. “He believes that when you hire somebody, you have to trust them. You can't micromanage. You will get some people who fail you, but you are going to get more people who are loyal to you and work hard.” In this case, “fostering independence” isn't just a euphemism for a busy administrator leaving his team members to fend for themselves, Deeb says. “I have never heard him say, ‘I don't have time for you.’ Whenever I need to see him, he’s there within minutes and his question is always, ‘What will it take on my end to help you accomplish your goal?’ ”

It’s a question that Hajjar asks on an institutional level, too, says Dr. Harry Lander. The associate dean for research administration first came to the Medical College in 1987 as a graduate student and stayed on to become a faculty member. He left in 2000 for a position on Wall Street, but returned in 2003 to work with Hajjar. “I came back because he has a vision that I share,”
Halting heart disease: Hajjar’s work includes studies of several classes of scavenger receptors (inset, upper right) on the macrophage that have been implicated in the uptake of oxidized low-density lipoprotein (LDL), commonly known as “bad cholesterol.” The binding of LDL to its receptors is key to the accumulation of fat-laden macrophages (lower right), called “foam cells,” which leads to atherosclerosis.

says Lander, who is spearheading the development of new online administrative systems. “Researchers today have huge regulatory burdens to deal with, but we can facilitate those processes and make Weill Cornell a more user-friendly place. David wants to make it easier for them to focus on their work instead of their paperwork.”

Hajjar believes that streamlining administrative procedures will make Weill Cornell more attractive to top talent. In addition to the projects that Lander is initiating, Hajjar wants to improve the physical space for research and increase the resources available to department chairs. “The perfect environment is one in which the institution takes care of your needs so you can do what you were hired to do,” he says. “A scientist has to be thinking about his or her work 24/7. It’s a way of life, not just an occupation.”

Hajjar speaks about the life of a researcher with feeling—after all, he has devoted much of his own life to research. He has been working on the relationship between inflammation and cholesterol metabolism since he was a graduate student at the University of New Hampshire in the late 1970s. His early studies of herpes viruses looked at the way in which the virus latches onto receptors on cells in arterial walls and changes the way that those cells break down cholesterol, leading to atherosclerosis. He went on to study the role of the signaling molecule, nitric oxide, in regulating the dilation of arteries and how it may affect inflammation in blood vessel walls. Over the past ten years, Hajjar has focused on how inflammation affects the receptors that regulate the way in which cholesterol is trafficked in and out of the blood vessel wall. His lab has used a genetic approach to knock out one of these receptors and found that doing so prevented the wall from becoming atherosclerotic.

Now Hajjar is ready to take what he has learned over the last thirty years and turn it into treatments for atherosclerosis, which
‘I want to move more quickly from bench to bedside. It’s not about how many papers I publish; it’s really about whether or not your work makes a difference.’

can lead to heart attacks, aneurysms, and other life-threatening complications. ‘I want to move more quickly from bench to bedside,’ says Hajjar. ‘That’s what this is all about. It’s not about how many papers I publish; it’s really about whether or not your work makes a difference. Many of us who have done basic science for years now want to partner with clinicians and get more involved in translational research.’

Hajjar plans to move forward with his research even as he juggles his administrative positions—believing that those jobs make him a better scientist, and vice versa. His leadership post has given him an aerial view of what is happening across medical research today; and, on weekends, he reads a wide variety of scientific journals so he can ‘talk the talk’ [a favorite Hajjar phrase] with faculty in many fields. That broad perspective has informed his own research agenda, keeping him aware of both basic science and clinical advances. And as an administrator, he has credibility with Weill Cornell faculty because he’s a scientist himself. ‘Researchers know that I feel their pain because I have my own lab and my own projects,’ says Hajjar.

Hajjar’s colleagues marvel at his ability to handle his administrative jobs and run a lab. ‘Sometimes I get tired just thinking about everything he has to do,’ says Deeb. ‘It’s his trust in people that allows him to be so efficient. If he felt that he had to be looking over everyone’s shoulder all the time, he’d never get anything done.”

Lander chalks up Hajjar’s efficiency to “his limitless energy, his incredible organization, and his ability to make tough decisions and move on.” Hajjar tempers his decisiveness with humor, says Lander. ‘Even when everyone is deadly serious, David is able to make people step outside themselves and get a fresh perspective. He might tell you that you’re behaving like Khrushchew pounding the table with his shoe at the U.N.—and, well, that is going to make you stop and laugh and be willing to see a bigger picture.”

Hajjar has his own theory about how he does it all. ‘No hobbies,” he laughs. ‘Really, it’s all about managing time. If you speak to any chairman in the Medical College, they’re dealing with the same issues I am.” With one difference: as dean, Hajjar has to address the concerns of faculty, staff, and students across the entire Graduate School. ‘David makes the time to listen to everyone, from a graduate student to a departmental chair,” Lander says. ‘And people know that if they go to him, they’re going to get a fair hearing. In the end, he always asks, ‘What is best for the institution?”

Hajjar got the chance to address that very issue in the broadest possible terms when Medical College Dean Antonio Gotto appointed him to lead the formulation of the institution’s third strategic plan. Over the last year and a half, Hajjar worked with faculty and administrators to draft a document, approved in September by the Board of Overseers, that maps a path for Weill Cornell’s future. It includes enhancements to the clinical side and the research enterprise, as well as changes to the MD and PhD curricula. ‘This is a hugely exciting time for us,” Hajjar says. ‘We are going to be able to secure Weill Cornell’s position in the very top rank of academic medical centers. We can make this one of the best places in the world to learn, to obtain medical care, and to pursue basic and clinical research.” Gotto concurs, noting that “we are constantly looking to the future in order to keep the Medical College at the cutting edge of new and innovative research. The fruit of our labor in this area will translate directly to the bedside, furthering our commitment to excellent patient care.”

One key element: a new building dedicated to research. Hajjar says that a lack of space has been holding back scientific discovery at Weill Cornell. The proposed new facility, one of the hallmarks of Cornell’s $4 billion capital campaign, will not only give current faculty members room to expand their research, it will create lab space for approximately fifty new faculty members in areas ranging from established strengths like neuroscience and stem cell biology to such emerging fields as genomics, nanomedicine, and developmental biology. And these additions to the Weill Cornell family will not necessarily be housed within the traditional departmental structure common to all medical schools, but may be in newly developed institutes and centers.

‘Now that the genome has been deciphered, people are working in crossover areas, and there’s no need to compartmentalize our researchers,” says Hajjar. ‘We’ve got neuroscientists working in the psychiatry department and biochemists working in the microbiology department. In the new building, each floor is going to be thematic in its organization. We will move all the stem cell biologists to one floor, for example, so they’re always bumping into people who can talk their talk.”

This physical reorganization will be complemented by an intellectual one that reflects Hajjar’s commitment to making Weill Cornell a hub for interdisciplinary research and education. The new strategic plan calls for the creation of centers that will bring together basic and clinical scientists in disparate fields studying diabetes, cardiovascular disease, neurodegenerative and neuropsychiatric disorders, infectious diseases, and cancer biology, among others. ‘Focusing specifically on disease processes such as cancer and diabetes will help us to encourage collaboration and translational discoveries,” says Hajjar. ‘We need to build on our current strengths in hard-core basic science by encouraging the recruitment of all types of scientists including those doing translational research, as called for by our new strategic plan. That will keep us at the vanguard of medical research.”

— C. A. Carlson
all tuberculosis a killer. Call it a scourge on the developing world. But don’t call it a “reemerging” disease. “I find that offensive and narrow-minded,” says immunologist Dr. Carl Nathan, “because it is the single leading cause of death from bacterial infection worldwide—and has been for time out of mind.”

Although Americans may occasionally be alarmed by news stories on drug-resistant TB flourishing in prisons and other enclosed populations—and the disease recently made headlines with the Gates and Buffett foundations’ multi-billion-dollar commitment to combat it, along with malaria and HIV—for the most part, it has lapsed from the first-world radar. “TB stopped being a major public health problem in the areas of the world that supported pharmacological research, but it never stopped being a problem in other areas,” Nathan says. “It’s the leading cause of death in HIV-infected people, and the leading cause of death in women in the middle years of life around the world. It’s a huge problem.”

Nathan, chairman of the Department of Microbiology and Immunology, has many research interests, including the potential for the toxic gas nitric oxide (produced by inducible nitric oxide synthase, or iNOS) to aggravate Alzheimer’s disease, and the possibility of harnessing the power of the immune system to fight cancer. But battling tuberculosis is an abiding passion. “What fascinated me about this particular pathogen is that it’s one of a select group that has no natural host other than humans, and it has the capacity to kill,” Nathan says. “In fact, the untreated infection has a mortality rate of 50 percent in people with normal immune systems. And it’s extremely prevalent: one-third of the people in the world are infected subclinically, meaning they have no active disease but are infected for life.”

After medical school, Nathan trained in both internal medicine and oncology, and for years he was active in the field of tumor immunology. The fact that *Mycobacterium tuberculosis* (Mtb)
Tuberculosis treatments have long had their limitations. For one thing, even in the best-case scenario, a complete course requires patients to take antibiotics for a minimum of six months. “Very few people comply with that,” Ehrt says. “So if you had a drug that could work in six weeks, it would be fantastic. It would change the whole problem.”

But the search for a short-term, effective treatment requires a switch from conventional pharmaceutical research—and Nathan’s work has found much-needed support with the recent gift of $7.25 million by Abby and Howard Milstein for the creation of a Chemistry Core Facility and a Program in Chemical Biology at the Medical College. Nathan is convinced that this type of philanthropy, outside of the pharmaceutical industry, is key to developing drugs with the ability to target TB.

Typically, Nathan notes, potential drug compounds are tested under optimal growth conditions, where the bacterium is replicating quickly. That may be the most efficient way of running an experiment, but in the case of diseases like TB it has a serious drawback. “The question you’re asking isn’t, ‘What kills Mtb?’ ” Nathan says. “It’s, ‘What keeps Mtb from growing under conditions where it otherwise can grow at its fastest possible rate?’ ” Not only are those conditions vastly different from what exists in the body—where Mtb lives inside macrophages whose environment is quite harsh, including a deficiency of oxygen and an abundance of acid—they’re the opposite of what’s going on in the subclinical patient, where Mtb is not actively replicating. And while those people may not be in imminent danger of death, from a public health standpoint their cases are no less urgent. “Five to 10 percent of them will eventually develop active disease—and then before they are successfully treated or die, whichever happens first, it’s estimated that they each will infect fifteen to twenty additional people a year,” Nathan says. “So you never catch up. The current approach to TB drug treatment just can’t work to reduce the proportion of the population that’s infected.”

— Beth Saulnier
ularemia is a rare ailment colloquially known as Hunter’s Disease or Rabbit Fever, since a common method of infection is a cut incurred while skinning an animal that harbors it. In the post-9/11 age, it’s also known as a potential bioweapon: it requires a very low infectious dose and could be easily disseminated via an aerosol spray. “You can inhale as few as ten bacteria,” says Lynda Pierini, an assistant professor of microbiology and immunology, “and get a serious or fatal illness.”

Although the fewer than 200 cases of tularemia that occur in the U.S. each year can be treated with antibiotics, terrorists might be able to engineer a resistant strain. That’s why researchers like Pierini want to know more about the pathogenesis of the bacterium *Francisella tularensis*, both in the entire host and in individual cells.

Tularemia’s deadly potential isn’t a recent discovery; the disease was first identified in the early twentieth century, and both the U.S. and the Soviet Union weaponized it during the Cold War. An outbreak during World War II’s Battle of Stalingrad prompted speculation that the Soviet Army had used tularemia against German troops, accidentally spreading it to Russian civilians.

Pierini, who earned her PhD in chemistry on the Ithaca campus and did a postdoc under Weill Cornell biochemist Frederick Maxfield, has been studying the disease for the past four years. She’s been concentrating on how the bacterium “highjacks” the specialized white blood cells known as macrophages—subverting their normal mission of clearing out invaders, and instead flourishing inside them. In the August 2006 issue of *Cellular Microbiology*, she identified one of the receptors that *F. tularensis* may use when it infects the macrophage. She and her four-person lab have also been screening chemical libraries to find new ways to inhibit the bacterium’s growth when it’s hiding inside the macrophage—and they have two “very promising” leads. (The lab’s other projects include studying how macrophages can malfunction in arteries, consuming cholesterol until they turn into “foam cells,” which form part of the plaque that causes atherosclerosis.) “Obviously, we hope there isn’t ever an intentional release of *tularensis*,” says Pierini. “But *Francisella tularensis* is an excellent model organism, so our research on its lifestyle may lead to insights into the pathogenesis of other bacteria.”

—Beth Saulnier
When a big company—say, Boeing—faces a major challenge like designing the next generation of commercial airplanes, it puts together a team of hundreds of designers, scientists, programmers, and engineers. Professor of microbiology Francis Barany believes that effective cancer research requires a similar approach, where bench researchers from varied disciplines work side by side in a multi-tiered strategy, collaborating with physicians from many specialties. The resulting “bedside-to-bench and bench-to-bedside” approach is the driving force behind Weill Cornell’s Hidden Cancer Identification and Eradication Project, which Barany hopes will be the model for a novel, more powerful way of doing medical research. “It’s not just about what we hope the project will accomplish,” says Barany, “but what we hope to demonstrate: a new way of having clinical and medical researchers collaborate.”

Despite advances in understanding the fundamental biology of cells, cancer is still the second
leading cause of death in the U.S., with nearly 1.3 million people diagnosed annually and more than 500,000 dying each year. The Hidden Cancer Project, which Barany has been developing over the last fifteen years, is now ready for its three-year pilot phase, a $14.5 million endeavor to be funded largely by government, industrial, and private grants. During this phase, Barany hopes to develop tests that not only better identify at-risk patients but also catch the disease earlier, with the long-term goal of providing improved, personalized therapies.

One-quarter of cancer-related mutations are inherited: an abnormal gene is passed from parent to child, posing a greater risk for a particular type of cancer. All other cancers are considered sporadic, meaning they occur spontaneously or due to environmental factors; certain normal genes simply begin to change. With both types of cancer, genes must undergo a number of complex, tumor-specific mutations before the cells develop into a cancerous state. And even then the genes within these cells continue to mutate, making the development of early detection tests and effective drug treatments a formidable task. By developing tests to identify these mutations—and the altered genes and proteins that are responsible for the initiation and progression of the cancer, collectively known as “markers”—the project will identify individuals at risk, as well as those with cancer in its earliest stages, when it is largely hidden but more treatable. A precise genetic diagnosis of cancer type and stage will enable more individualized treatment using existing medications, and newly discovered molecular markers may facilitate the development of gene-specific drugs.

The project relies on collaborations among physicians and scientists throughout Weill Cornell and the Tri-Institutional community, including researchers at Memorial Sloan-Kettering Cancer Center and the Rockefeller University. Although there are currently fewer than a hundred researchers and a dozen labs involved, both figures are expected to double in the coming years. The project’s scientific agenda will be guided by an internal advisory board as well as an outside panel of internationally recognized experts in the genomics of cancer. During the pilot phase, the project will focus on colon, lung, and prostate cancers. As it expands, it will include breast cancer, blood cancers such as leukemia and lymphoma, and others—work that will continue into the foreseeable future. “Science is a long and tedious process,” says Barany. “It’s a marathon, not a sprint.”

Even with an extensive timeline, the project’s goals are ambitious—and would not be possible without the molecular profiling technologies that Barany’s team has developed over the past decade. Their discovery of the DNA and RNA changes that occur in tumors allowed for the identification of previously unrecognized inherited risk factors, cancer-causing mutations that are passed down from parent to child. In 1991, the lab published its work on ligase chain reaction and ligase detection reaction, the technology behind the most commonly used commercial test for cystic fibro-
sis. In 1999, it created programmable DNA arrays, or universal DNA chips, which enable the detection of thousands of sequence variations; it’s the primary technology used by the International HapMap Project, an effort to catalog genetic similarities and differences. In 2001, the lab published its work on EndoV mutation scanning, the fastest and most accurate way to look for new cancer mutations. And in December 2005, it discovered a shortcut to identifying new genes that cause cancer.

Barany likens his lab’s technological approach to ground-penetrating sonar used to detect damage beneath pavement. “A street is far more complicated than what appears on the surface,” he says. “A pothole can be benign, or it can mask serious damage to the network of cables and pipelines below. Just as in cancer, some of the damage may be due to inherited factors, like faulty pipe material, or environmental factors, like heavy trucks damaging the road above.” The gene-analysis technology the lab is developing, he says, could offer a view into problems lurking deep underground. “Perhaps,” he says, “it could detect the damage early enough so it can be repaired before a main conduit breaks.”

— Tobin Levy

In the genome: Examples (top left and right) of EndoV/ligase scanning to detect mutations of p53, a gene involved in tumor suppression. Right: Polymerase chain reaction/ligase detection reaction tests indicate inherited mutations in the BRCA1 and BRCA2 genes linked to breast cancer.
Proteins called annexins are found in the cells of almost all organisms, from fungi to humans. Although these fifty proteins were discovered in the 1980s, their purpose still puzzles researchers—except for annexin 2. It is the only one whose function is well understood, thanks to Dr. Katherine Amberson Hajjar. Since she discovered the protein’s role in 1994, Hajjar has taken her research from the tissue-culture dish to mouse models to tissue samples from patients. “Right now,” she says, “one of the most interesting things about our lab is that we’re working at all three levels.”

Hajjar’s team has uncovered clues about the role of annexin 2 in human disease, from a blood-clot disorder to a type of leukemia (and, perhaps, certain tumors), and has made important discoveries about annexin 2’s cellular mechanisms and how they function in mice. In the late 1990s, Hajjar discovered that annexin 2 plays a crucial role in two key processes: angiogenesis, or the formation of blood vessels, and fibrinolysis, or how blood vessels regulate the removal of clots. It’s angiogenesis that is at the heart of her lab’s most recent work on human tumor biology. Although their research is preliminary, Qi Ling, assistant research professor of cell and developmental biology, and Jia Ruan, MD ’99, PhD ’98, assistant professor of medicine, have found several clues suggesting that specific annexin 2 populations seem to enter tumors and are required for their growth.

Hajjar and her colleagues have also linked annexin 2 to thrombosis, or the formation of clots that obstruct blood flow. Earlier this year, she and...
Gabriela Cesarman-Maus, a former postdoctoral fellow at Weill Cornell, published research in the journal Blood on antiphospholipid syndrome (APS)—a disorder, associated with infertility and pregnancy loss, in which patients develop antibodies to normal blood proteins. Not only were patients with APS more susceptible to thrombosis, the ones with thrombosis were also more likely to have developed antibodies to annexin 2. “That raises the possibility that antibodies to annexin 2 might be pathogenic in some patients with this disorder,” says Hajjar, who is chair of the Department of Cell and Developmental Biology.

Patients with the opposite problem—a tendency toward bleeding and hemorrhage—offered Hajjar the first link between annexin 2 and a human disease. In the 1990s, her lab team discovered that annexin 2 is overactive in patients with acute promyelocytic leukemia. “We think that the overexpression of annexin 2 might prevent them from forming a stable blood clot when they need it,” Hajjar says, “thus leading to the bleeding problem.”

While Hajjar’s researchers work to understand annexin 2’s impact on human disease, they also continue to look at its cellular mechanisms. Arun Deora, assistant research professor of cell and developmental biology, has shown that stimulation of the cells that line blood vessels, known as endothelial cells, prompts annexin 2 to move to the cell surface—where it becomes activated and helps to supply new blood vessels. The stimulation can come from an injury, for example, or a tumor signaling that it wants to grow. Kai-Li He, a research associate in the lab, has discovered that a related protein known as p11, which chaperones annexin 2 to the cell surface, is also tightly regulated within the cell. These scientists have demonstrated that we’re dealing with a dynamic system, Hajjar says—one that could be manipulated.

If that’s true, her research could lead to new therapies for patients with a variety of problems. Stimulate the endothelial cell in the right way, and you could increase the activity or amount of annexin 2 and prevent excessive clotting. “That might be useful for the treatment of a person with thrombotic disorder, for example,” Hajjar says. “On the other hand, you might want to inhibit that process in a patient in whom you wanted to block angiogenesis.”

Now that she has unlocked the mysteries of one annexin, there are forty-nine to go. Her lab will likely tackle the others, starting with what could be an important clue: the main portion of each annexin molecule shares up to 61 percent of its amino acid sequences with its cousins. “The annexins might have a common function,” Hajjar says. “That would be exciting to discover.”

— Susan Kelley

Under the microscope: Expression of annexin 2 in tumor vessels of experimental mouse lymphoma (figure 1); endothelial cells (fluorescing green) and pericytes (red) during tumor angiogenesis (2); robust angiogenic responses are seen in normal mice (3); while weak responses are observed in their annexin 2-deficient counterparts (4). Below: A human blood monocyte showing high-level expression of annexin 2.
Biochemist Frederick Maxfield battles disease on the cellular level.

Cell network: Frederick Maxfield (center) in his lab with postdocs (left to right) Lori Tortorella, Abigail Haka, Amitabha Majumdar, and Nina Pipalia.
Looking at lipids: Two living cells (1) showing fluorescent sterol (green), a fluorescent lipid (blue), and the iron-carrying protein transferrin (red). The yellow area indicates places where cholesterol has entered an organelle into which the transferrin has been delivered. Macrophage cells (2 and 3) showing lipid droplets (red) and fluorescent sterol (green).

Alzheimer’s. Hardening of the arteries. Niemann-Pick, type C. At first glance, they seem worlds apart: Alzheimer’s involves progressive memory loss, confusion, erratic emotions. Atherosclerosis culminates with explosive force in a heart attack or stroke. The exceedingly rare NPC attacks brain and body, with neurological symptoms and enlargement of the liver and spleen. The first afflicts the elderly, the second usually affects the middle-aged; NPC strikes elementary-school children and often kills them before their twenty-first birthday.

But what you see depends a lot on where you look.

Zoom down to the cellular level and you can see that all three diseases occur because of metabolic failures in the digestive organelles of individual cells. “It seems like a big jump to go from projects that are studying heart disease to studying Alzheimer’s disease,” says biochemist Frederick Maxfield, who has published papers on a host of basic cellular mechanisms. “But at the cellular level it’s almost the same process—or very closely related.”

Credit the microscope. Maxfield’s research has tackled two intersecting problems: observing the movement of molecules across the cell membrane and among the cell’s organelles, and understanding the mechanisms of the process itself, known as endocytosis. “The question I’m interested in, very broadly,” says Maxfield, “is: how do cells work?”

To find out, he has deployed a host of techniques including electron microscopy, fluorescence microscopy, confocal microscopy, and, most recently, multi-photon microscopy. “Endocytosis has turned out to be a much more complicated problem than any of us imagined in the 1970s, when I started working on it,” says Maxfield, who serves as faculty adviser of Weill Cornell’s core facilities for optical microscopy, cell screening, X-ray crystallography, and nuclear magnetic resonance.

Consider atherosclerosis: In a healthy system, cells known as macrophages patrol the extracellular spaces in a blood vessel, continuously digesting dead cells and bacteria. But when a macrophage encounters deposits of a lipoprotein—the bad cholesterol known as LDL—the system stalls. The macrophage consumes the cholesterol molecules, but it is unable to get rid of the ingested cholesterol. And then the macrophage stops moving. Eventually, the bloated cells accumulate along the blood vessel lining in an atherosclerotic lesion that narrows—and ultimately blocks—the blood vessel.

Researchers studied the cholesterol molecule in biochemical assays and with fluorescent staining in fixed tissue, but neither technique directly addressed the molecule’s activity in living cells. Maxfield
and his collaborators used yeast-derived sterols that are naturally fluorescent to label LDL, and then they overhauled the lab’s microscope system to detect ultraviolet light, so they could analyze the molecular-level interactions between lipids and macrophages, and, in particular, the movement of cholesterol through the cell membrane.

When Maxfield read a paper linking a certain protein in lipoproteins with the early onset of Alzheimer’s, he turned his attention to the neural equivalent of macrophages. These cells, known as microglia, serve as key inflammatory responders in the central nervous system. Like macrophages confronted with LDL, microglia fail to break down amyloid beta, the protein that forms plaque in the brains of Alzheimer’s patients. “We realized we could now study a different and important biomedical problem using all the tools that we’ve been developing for studying macrophages and lipoproteins,” Maxfield says. “Now we’re finding interesting things about how microglial cells ingest amyloid, and how they can be tickled so they either do or don’t digest the amyloid.” Relative pH offers a clue. In most cells, lysosomes are acidic. But in microglia, they have a higher pH, perhaps making them less efficient at protein degradation. Altering the pH might kick the microglia into gear. “The challenge,” he says, “is to take this research from tissue culture to animals.”

Disrupted cellular digestion also factors prominently in Niemann-Pick, type C: a genetic glitch in the production of certain proteins that hampers the ability of cells to release cholesterol from the lysosomes. The consequent buildup of cholesterol molecules leads to an intracellular traffic jam that engorges the lysosome, kills the cell, and eventually overwhelms the associated organ with lipid deposits. The most severe effects are in the brain, but other organs such as the liver and spleen are also affected. Over the course of the past decade, Maxfield and his group have investigated how the affected protein molecules work within the cell and begun exploring methods for reversing the process. In one project, the group uses robotic microscopes to screen libraries of tens of thousands of chemicals to identify those that could be further tested as novel drugs for NPC. So far, twenty chemicals that reduce cholesterol accumulation have been selected for further study.

Maxfield credits much of his research success to having the right equipment. “We’re always on the lookout for new tools that can solve biological problems we haven’t been able to solve with the old tools,” he says. And if the right tool doesn’t exist, he finds someone to make it. This fall, a collaboration with Cornell faculty in Ithaca—physicist Watt Webb and biomedical engineer Warren Zipfel—yielded a multi-photon microscope that Maxfield intends to deploy for observation of cellular processes in living tissue samples. “We’ll look at everything from animal models to human tissues,” he says. “We’re also planning to start using it in collaboration with clinical researchers for diagnostic purposes.” — Sharon Tregaskis
2005–2006 a year in review

Visit www.med.cornell.edu for more information.
The Development Office looks back on a successful year, highlighted by the completion of the Advancing the Clinical Mission capital campaign and a rewarding reunion with classmates and students.

College Completes Capital Campaign

In January 2006, the Medical College announced the successful completion of its four-year, $750 million capital campaign, Advancing the Clinical Mission—one of the largest campaigns ever undertaken by a medical school. Alumni were responsible for giving and raising more than $30 million, including $16 million in scholarship support. “These funds will enable Weill Cornell to recruit the very best faculty and students, and will ensure the College’s global leadership in the prevention and treatment of illness,” said Dean Antonio Gotto Jr.

The centerpiece of the campaign is the new thirteen-story Ambulatory Care and Medical Education Building, the first clinical building in the history of the Medical College. This new facility will consolidate many clinical practices under one roof, offering comfortable, convenient, one-stop shopping to our ambulatory care patients.

By expanding facilities and recruiting new faculty, the campaign’s clinical initiatives will pioneer new health-care paradigms for the heart, the brain, aging, children’s health, women’s health, and specialty care.

The campaign established new biomedical research programs in computational biomedicine, genetic medicine, stem cell research, pediatric research, and chemical biology. These programs will keep Weill Cornell at the forefront of scientific discovery and enable us to translate these findings into superior patient care.

A state-of-the-art Clinical Skills Teaching Unit has been designed, to provide medical students with the key diagnostic, examination, and communication skills necessary to enhance and enrich the doctor-patient relationship and patient outcomes. In addition, endowment funds from Advancing the Clinical Mission established a new MBA joint degree program that enables MD and PhD students to combine their Weill Cornell degrees with an MBA from the Johnson Graduate School of Management of Cornell University, giving them the advanced business education they need to succeed in the new health-care landscape.

Through the campaign, donors committed to forty Clinical Scholar Awards, which provide financial support to outstanding junior faculty for their teaching and research interests. The campaign also endowed twenty-four new professorships, acknowledging our intellectual leadership—our most accomplished physicians, scientists, and educators.

Reunion 2006

Reunion 2006, on the weekend of October 13–14, was hosted by Kenneth Swan, MD ’60, and Gene Resnick, MD ’74, with special dinners for the classes of 1945, 1955, and 1981. Nearly 600 alumni and family attended—the largest reunion total ever. The occasion provided an opportunity for alumni to renew old friendships, take a stroll down memory lane, and hear firsthand about the exciting work in progress at their alma mater. A host of presentations and activities took place both Friday and Saturday, capped by the Reunion Gala with a harbor-side view of Manhattan’s lively parade of river traffic from Pier 60, Chelsea Piers.

The Alumni Association also increased its efforts to reach out to alumni around the country through individual meetings as well as small gatherings, such as the reception held in March in Houston, Texas, to introduce a group of alumni to the affiliation between Weill Cornell and Methodist Hospital.
We are grateful to all of the generous friends who have supported Weill Cornell over the past year. Special thanks are extended to the following donors who gave $1,000 or more during the fiscal year July 1, 2005, through June 30, 2006.
Linda & Alan Englander Charitable Fund
Mr. and Mrs. Israel A. Englander
Joe R. Engle
Dr. Robert S. Ennis
Epic Systems Corporation
Epilepsy Foundation
Espin Philanthropies
Barbara B. Epstein
Eroica Music, Inc.
Rosa M. Esman
Anne E. Estabrook
Estreich & Company
Ethicon Endo-Surgery, Inc.
Dr. Stephen E. Ettinghausen
ExxonMobil Foundation
G. Leslie Fabian
Fasimilte Communications Industries, Inc.
Factset Research Systems
Mr. and Mrs. William T. Fairbairn
Edgar W.B. Fairchild Fund
Carmine Falcone
Gay A. Fallows
The Fanwood Foundation
The Gloria & Hilliard Farber Foundation
Mr. and Mrs. Stoughton Farnham
Moufid Farra
Nancy L. Farrell
FC Beekman Associates, LLC
FC East River Associates, LLC
FC/Yorkers Associates
The Feil Family Foundation
Mr. and Mrs. Jeffrey Feil and Family
Louis Feinberg Foundation
Mr. and Mrs. Roger H. Felberbaum
Mr. and Mrs. William Felder
Diana Feldman
Judy and Richard Feldstein
Ivan Y. Feng
The Fenton Foundation
Dr. Frederick J. Ferlic
Ferman Family Foundation
E. Robert Fernholz
Jerald Fensenden
Cary Fields
John K. & Patricia J. Fitzgibbon Charitable Foundation
Fight for Sight, Inc.
Mr. and Mrs. William Filonuk, Jr.
Manuel & Leon Finkle Foundation, Inc.
D. F. K. Finlay
Steven Finlay
Irene S. Fisher
Mr. and Mrs. Fred N. Fishman
Robert A. Fitzgerald
Mr. and Mrs. Arthur Fleischer Jr.
Peter E. Fleming Jr.
Evelyn Floret
Florida Crystals Corporation
The Jattogue Fogarty Trust
Barbara Fontana
The Ford Foundation
Anne Ford
Charlotte M. Ford
Forest Pharmaceuticals, Inc.
Rhoda Forman
Leslie A. Fornino
Estate of Jane M. G. Foster
Foundation for Anesthesia Education and Research
John M. Fowler
Michael J. Fox Foundation
Dr. and Mrs. Howard A. Fox
Dr. David G. Fraser
Fraxa Research Foundation
Solomon & Edith Freedman Charitable Foundation
Robert M. Frehse Jr.
Rosalind J. Freidus
Mr. and Mrs. John H. French II
Payne and Roger Frey Philanthropic Fund
Fribourg Foundation, Inc.
Fried Frank Harris Shriver & Jacobson, LLP
The Fried Foundation
The Barry Friedberg and Charlotte Moss Family Foundation
Friedman Family Foundation
Barbara and Stephen Friedman
Peter R. Friedman
Leonard Friedman
Dr. Robert Friedman
Ruth W. Friendly
Mr. and Mrs. Matthew M. Friestedt
Sandra G. Friso
The L.W. Frohlich Charitable Trust
David Fromkin
Charles A. Frueauff Foundation, Inc.
Bella Frubin
Clayton W. Frye Jr.
Joan C. Fu
Nancy E. Fuchs
Elizabeth H. Fuller
Fund for Blood and Cancer Research
Jill Gallagher
Howard L. and Judie Ganeck
Philanthropic Fund
Diane and David Ganeck Family Foundation
Dr. Kenneth B. Gantz
James R. Gardner
Joyce Garson
Seymour Gartan
Mrs. Theodore S. Gary
Dr. Lynn M. Gauvin
GE Medical Systems
Mr. and Mrs. Melvin Gebroe
Li-Lan Gee
Frances C. Geer
Michael E. Gellett Trust
Mr. and Mrs. Michael E. Gellett
Rosa and Robert Gellett
General Electric Company
Mr. and Mrs. Michael Generoso
Genesis Consultants of New York
Joseph A. Gentile
The Geogescu Family Foundation
Ruth and Art Gerber Fund
Joy Gernott
Edward J. Gentile
Mr. and Mrs. Glen L. Gertz
Mr. and Mrs. Anthony J. Giannalva
Richard S. Gilbert
Mr. and Mrs. S. Parker Gilbert
S. Hazard Gillespie
The Howard Gilman Foundation
Moses Gindi
Dr. Bernard Gitler
The Benjamin Gittlin Foundation
The Milo Gladstein Foundation
GlaxoSmithKline
GlaxoSmithKline Foundation
Leo P. Gleicher Foundation
Estate of Helena L. Glover
GNYHA Ventures, Inc.
Dr. Yves P. Gobin
Goerlich Family Foundation
Arnold P Gold Foundation, Inc.
Mr. and Mrs. Jack Gold
Golden Family Foundation
Blanche S. Goldstein
Sol Goldstein Charitable Trust
The Goldstein Sachs Group
Josh A. Goldstein
Mr. and Mrs. Paul Goldstein
Steven F. Goldstein
The Horace W. Goldsmith Foundation
Michael Goldsmith
Michael Max Goldstein Rev. Trust
N. S. Goldstein Foundation, Inc.
Dr. Jonathan V. Goldstein
Peter Goldstein
Mr. and Mrs. Peter Goltra
Dr. Jeffrey W. Goldberg
Mr. and Mrs. Samuil Golub
Goodman Media International, Inc.
The Goodman Charitable Trust
Mr. and Mrs. Jeffrey Goodman
Harvey Goodstein Charitable Foundation
Google Matching Gift Program
The Kenny Gordon Foundation
The Gordon Foundation, Inc.
Elizabeth M. Gordon
Dr. Jennifer Gordon
Joseph L. Gossner
Dr. Geoffrey J. Gottlieb
Dr. and Mrs. Antonio M. Gottlo Jr.
Ernest and Herta Gottschalk
Philanthropic Fund
Mr. and Mrs. Harry E. Gould Jr.
Jane M. Gould
Peter Gould
Dr. Bernice S. Grafstein
Dr. Robert T. Grant
Glória Gray
John P. Gray
Jonathan Gray
Mr. and Mrs. David S. Grayson
Mr. and Mrs. Edward Grayson
Beatrice W. Greenbaum
Estate of Carolyn M. Greenberg
Joel I. Greenberg
Maurice R. and Conine P. Greenberg
William Teich Greene
Greenhill Family Foundation
Bernard and Marilyn Greenspan
Charitable Giving
Mr. and Mrs. Joseph M. Gregory
David J. Grias
Eddyth Griffin Trust
Don Gringer
The Grodetsky Family Foundation
Terry L. Gross
Jenard and Gail Gross Fund
The Julia and Seymour Gross Foundation
Mr. and Mrs. Norman Gross
Aryn and Matthew Grossman
Foundation
Ronald Grossman
Sanford S. Grossman
The Grove Creek Fund
Mr. and Mrs. Hurst Grosses
Lila Gruber Research Foundation
Dr. Mark Gudesblatt
Dr. Peter M. Guida
Gumuchian Fils Ltd.
Gurevich Family Charitable Fund
Mr. and Mrs. Henry B. Gutman
Dr. Harvey Gutmann
Dr. Richard J. Haber
Hackers for Hope
Mr. and Mrs. William H. Hadley
Hagerman Fund
Ilse Hahn
Dr. and Mrs. Frederick C. Hamilton
Mr. and Mrs. Norman Hammer
Mr. and Mrs. Mark K. Hammerschlag
Kenneth H. Hannan
The Irving A. Hansen Memorial Foundation
Joann Hanson
Jose Kuri Harfush
Leonard M. Harlan Philanthropic Fund
Mary W. Harriman Foundation
Gladys and Roland Harriman Foundation
Mary and Kathleen Harriman Foundation
Mr. Stanley Harris
The John A. Hartford Foundation
James N. Hauslein
Anne T. Hayden
Joseph G. Hayes Medical Education Foundation
HayGroup Inc.
HDISA - Research Initiatives
Health Resources Optimization, Inc.
C. S. Heard
The William Randolph Hearst Foundation
The Hearst Corporation
Mr. and Mrs. Peter Hearst
Heart Rhythm Society
Hebrew Home for the Aged at Riverdale
Mr. and Mrs. Bruce J. Hector
Heidell, Pittoni, Murphy & Bach, LLP
Frederika Heinemann
Dr. George F. Heinrich
Dr. David C. Helfgott
Hellenic Medical Society of New York
The Leona and Harry B. Helmsley Charitable Trust
Hemophilia of Georgia, Inc.
Dr. Charles H. Hennemans Jr.
Cheryl L. Henson
The Victor Herbert Foundation
Dr. J. Kenneth Herd
Hereditary Disease Foundation
The Hermione Foundation
John S. Herold
Raymond R. Herrmann Jr.
Barbara Herschman
Mr. and Mrs. Mitchell Hershey
Rogers and Susan Hertog Charitable Fund
Charles Hertzog Foundation
The Abraham Joshua Heschel School
Dr. James Hession
Irene Hayes
Annette Heyman Foundation, Inc.
Samuel J. Heyman
Hickory Foundation
Hickrell Foundation
Highpark Investments, LLC
Dr. and Mrs. J. Laurance Hill
Hiller Foundation
The Hillson Foundation
Dr. William V. Hinde
Mr. and Mrs. Joseph C. Hinsey IV
Douglas Hirsch and Holly Andersen Fund
Ruth Hirsch
Irma T. Hinschl Trust
Robert H. Ho
Patrick Malloy III
Dr. Gerald L. Mandell
Dr. Karl G. Mangold
Lynn Manning
Edwin A.G. Manton
March of Dimes Birth Defects Foundation
Mr. and Mrs. Max Marco
Thomas I. Marcossou
The Grace R. and Alan D. Marcus Foundation
Samuel B. Marcus
Eric Mader
Scott Margolin Scholarship Foundation
The Henry M. Margolis Foundation
S-L Marketing Inc.
MARRA Foundation
Joe and Pasena Maroun Family Foundation Trust
Estate of Shirley Marshak
Gloria S. Marti
Arlene and Neil Martin Charitable Fund
Martin, Clearwater & Bell
Dr. and Mrs. Alex Martin
The Max-Better Foundation, Inc.
Mr. and Mrs. Leonard Max Jr.
Mr. and Mrs. Michael T. Masin
Kurt Masur
Mather Charitable Gift Fund
Marjorie A. Matheson
Mathis-Pfohl Foundation
Abby Rockefeller Mauzé Charitable Trust
Georgene and Hamish Maxwell
Mr. and Mrs. John E. Maxwell
Dr. J. Burton Mayes
McAlon & Friedman
Mr. and Mrs. William T. McConnell
Mark J. McCooey
Mr. and Mrs. Robert H. McCooey Jr.
Julia A. McGee
Mr. and Mrs. John F. McGillicuddy
Kevin M. McGovern
Dr. Robert L. McKee
Estate of Rosalie T. McKenna
Mr. and Mrs. Robert F. McKeon
The McKnight Endowment Fund for Neuroscience
Kathleen McLaughlin-Jerge
J. Donald McNamara
Dr. Allen W. Mead
Media Street, Inc.
Medical Billing Resources Inc
The Medtronic Foundation
Medtronic
Meehan Fund
Mr. and Mrs. Warren A. Meeker
Ketan J. Mehta
The Peter C. Meinig Revocable Trust
Peter C. Meining
Yvonne C. Meinald
Mr. and Mrs. Ron Meltzer
Dr. and Mrs. Alan Meltzer
Mr. Michael A. Mena
Paul R. Mendelsohn
The Menin Family Charitable Trust
The John Merck Fund
Merck & Co.
Meridian Capital Group, LLC
Dr. Erwin Memelstein
The Merow Foundation
Merrill Lynch & Co.
The Messinger Foundation
Mr. and Mrs. Ricardo A. Mestres
Metropolitan Philanthropic Fund
Helen N. Mettler
Mr. and Mrs. Ira A. Meyer
Mr. James Michalove
Mary Elizabeth Michel
Dr. Fabrizio Michelassi
Dr. and Mrs. Alexander M. Mikhailov
Mill Basin Associates, LLC
Dr. Dinah Miller
Howard P. Milstein Foundation
Mr. and Mrs. Howard P. Milstein
Dr. Robert J. Min
MIND and Life Institute
Mitchell Giupola Architects
Sara & William Mittler Foundation
Mizuho Corporate Bank
The Steven & Heather Mnuchin Foundation
Donald B. Murphy
Muscular Dystrophy Association, Inc.
Mr. Stuart B. Mushlin
Robert C. Myers
N. N. B. Industries, Ltd.
Nabors Corporate Services, Inc.
Nabors Wells Services Co.
Nachbur Family Fund
Nachshon Fund
Lawrence Nagon
NARSAD
Helen S. Nathan
Nathan’s Battle Foundation
National Alliance for Autism Research, Inc.
National Ataxia Foundation
National Hemophilia Foundation
National Multiple Sclerosis Society
New York Junior Tennis League
New York Methodist Hospital
Steven O. Newhouse
Weill Cornell in Qatar: The Medical College campus features striking modern architecture.

FALL / WINTER 2006 45

Mrs. Keith M. Moffat
Ambrose Monell Foundation
Monet Family Fund
Monterey Fund, Inc.
Estate of Harry Montero
Moog, Inc.
Helen E. Moore
Mr. and Mrs. Richard W. Moore Jr.
Sanford E. Moore
Mrs. Lawrence J. Moreau
John T. Morgan Charitable Gift Account
The JP Morgan Chase Foundation
Morgan Construction Enterprises, Inc.
Morgan Stanley
Elissa Morris
The Morse Family Foundation, Inc.
Charles B. and Paula M. Moss Foundation, Inc.
Robin & Charles B. Moss Jr. Family Charitable Trust
MSRI Management Inc.
Mt. Olive Baptist Church
Multiple Sclerosis Foundation
Donald Toresco
Murdoch Foundation
Elizabeth W. Murov
National Vulvodynia Association
National Rosacea Society
NBC Universal
NDC Health
John P. Neafsey
The Daniel M. Neidich & Brook Garber Neidich Foundation
Mr. and Mrs. Don H. Nelson
Mr. and Mrs. Stuart K. Nelson
Dr. Richard S. Nenoff
Neurology, Inc.
Neurovax
The Dorothy and Arnold Neustadter Foundation
New York Firefighters Burn Center Foundation
New York Academy of Medicine
New York Cardiac Center
New York Cohrs’s Foundation
New York Hospital Medical Center of Queens
New York Society of Colon and Rectal Surgeons, Inc
New York Junior Tennis League

Weill Cornell in Qatar: The Medical College campus features striking modern architecture.

Dr. Herbert M. Oestreicher
O’Herron Family Foundation
O’Kelly Family Trust
Oikodata Corp.
Morton Olshan & Carol Olshan Foundation, Inc.
O’Neal Family Foundation
Mr. and Mrs. James O. O’Neill Jr.
John F. O’Neill
Optima Family Charitable Trust
Optima Fund Management
Orphan Medical, Inc.
Ortho Biotech Inc.
Charles Ottmer
Mrs. William H. Osborn Jr.
Mr. Richard D. Osborne
Osceola Foundation, Inc.
OSI Pharmaceuticals
Margaret Osner-McQuade
Victor F. Owen
Oxford Enviromental Construction Corp.
Joanne Pace
Daniel P. and Nancy C. Paduano Foundation
Eric F. Pai
Hannah Pakula

The Lizabeth and Frank Newman Charitable Foundation
June Newmark
Nike Peabody LLP
Tracy L. Nixon
Gloria F. Nocolich
North Fork Bank
Novartis Pharmaceuticals
Dr. Judith A. Nowak
Saul Nulman
Mr. and Mrs. Jay A. Nussbaum
Dr. and Mrs. James Oates III
William O’Connor
Dr. Peter M. Odell
Dr. Robert J. Oehrig
Dr. Kurt F. Oesterling
Sylvan and Ann Oestreich Foundation

FALL / WINTER 2006 45

Mrs. Keith M. Moffat
Ambrose Monell Foundation
Monet Family Fund
Monterey Fund, Inc.
Estate of Harry Montero
Moog, Inc.
Helen E. Moore
Mr. and Mrs. Richard W. Moore Jr.
Sanford E. Moore
Mrs. Lawrence J. Moreau
John T. Morgan Charitable Gift Account
The JP Morgan Chase Foundation
Morgan Construction Enterprises, Inc.
Morgan Stanley
Elissa Morris
The Morse Family Foundation, Inc.
Charles B. and Paula M. Moss Foundation, Inc.
Robin & Charles B. Moss Jr. Family Charitable Trust
MSRI Management Inc.
Mt. Olive Baptist Church
Multiple Sclerosis Foundation
Donald Toresco
Murdoch Foundation
Elizabeth W. Murov
National Vulvodynia Association
National Rosacea Society
NBC Universal
NDC Health
John P. Neafsey
The Daniel M. Neidich & Brook Garber Neidich Foundation
Mr. and Mrs. Don H. Nelson
Mr. and Mrs. Stuart K. Nelson
Dr. Richard S. Nenoff
Neurology, Inc.
Neurovax
The Dorothy and Arnold Neustadter Foundation
New York Firefighters Burn Center Foundation
New York Academy of Medicine
New York Cardiac Center
New York Cohrs’s Foundation
New York Hospital Medical Center of Queens
New York Society of Colon and Rectal Surgeons, Inc
New York Junior Tennis League
New York Methodist Hospital
Steven O. Newhouse

The Lizabeth and Frank Newman Charitable Foundation
June Newmark
Nike Peabody LLP
Tracy L. Nixon
Gloria F. Nocolich
North Fork Bank
Novartis Pharmaceuticals
Dr. Judith A. Nowak
Saul Nulman
Mr. and Mrs. Jay A. Nussbaum
Dr. and Mrs. James Oates III
William O’Connor
Dr. Peter M. Odell
Dr. Robert J. Oehrig
Dr. Kurt F. Oesterling
Sylvan and Ann Oestreich Foundation
1898 Cornell University Medical College is established with a gift of $1.5 million from Colonel Oliver H. Payne

1915 Roscoe Giles is the Medical College’s first black graduate, inaugurating the school’s pioneering efforts in education for underrepresented minorities

1927 The Medical College joins forces with The New York Hospital

1928 George Papanicolaou reports on his studies of cervical and vaginal cells, leading to the development of the cytological “Pap test” for the early detection of cervical cancers

1955 Vincent du Vigneaud wins the Nobel Prize in Chemistry for his discovery of the peptide hormone oxytocin and the synthesis of other protein hormones
1963 First kidney transplant in the metropolitan New York City area

1983 First MRI scanner facility in the New York City metropolitan area opens

1991 Tri-Institutional MD-PhD Program is established among the Medical College, the Rockefeller University, and Sloan-Kettering Institute

1997 The New York Hospital merges with the Presbyterian Hospital to form NewYork-Presbyterian Hospital, linking the Medical College to one of the world’s largest health-care institutions

1998 Due to their unprecedented generosity and leadership, the Medical College is renamed the Joan and Sanford I. Weill Medical College of Cornell University

2002 First medical school in the U.S. to offer its MD degree in a foreign country with the founding of the Weill Cornell Medical College in Qatar

2007 New thirteen-story Ambulatory Care and Medical Education Building opens at 70th Street and York Avenue in New York City
Facts and Figures from Weill Cornell Medical College and the Graduate School of Medical Sciences

Enrolled Students

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical students</td>
<td>407</td>
</tr>
<tr>
<td>Graduate students</td>
<td>365</td>
</tr>
<tr>
<td>MD-PhD students</td>
<td>109</td>
</tr>
</tbody>
</table>

Degrees Conferred in 2005-06

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>101</td>
</tr>
<tr>
<td>PhD</td>
<td>39</td>
</tr>
<tr>
<td>MS</td>
<td>12</td>
</tr>
</tbody>
</table>

Entering Medical Students

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total enrolled students</td>
<td>407</td>
</tr>
<tr>
<td>Men</td>
<td>203</td>
</tr>
<tr>
<td>Women</td>
<td>204</td>
</tr>
<tr>
<td>N.Y. State Residents</td>
<td>34</td>
</tr>
<tr>
<td>Out-of-State Residents</td>
<td>66</td>
</tr>
<tr>
<td>International Students</td>
<td>1</td>
</tr>
</tbody>
</table>

Average Science GPA

- **Medical students**: 3.72
- **Graduate students**: 3.72
- **MD-PhD students**: 3.72

Average MCAT Score

- **Verbal**: 10.8
- **Quantitative**: 76th percentile

Average GRE Scores (percentiles)

- **Verbal**: 10.8
- **Quantitative**: 76th percentile

Faculty Statistics

Total Faculty

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical College</td>
<td>2,031</td>
</tr>
<tr>
<td>Sloan-Kettering Division</td>
<td>63</td>
</tr>
<tr>
<td>Weill Cornell Division</td>
<td>164</td>
</tr>
<tr>
<td>Part-Time</td>
<td>191</td>
</tr>
<tr>
<td>Voluntary</td>
<td>1,414</td>
</tr>
</tbody>
</table>

Postdoctoral Associates

- **Medical College**: 215
- **Sloan-Kettering Division**: 152
- **Weill Cornell Division**: 63

House Staff (Residents)

- **Total enrolled students**: 621
- **Full-Time**: 2,031
- **Part-Time**: 191
- **Voluntary**: 1,414

Underrepresented Minorities

- **Total enrolled students**: 2
- **Out-of-State Residents**: 21
- **Women**: 50
- **Men**: 51
- **U.S. Citizens**: 31
- **Out-of-State Residents**: 21
- **Women**: 50
- **Men**: 51

Entering PhD Students

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total enrolled students</td>
<td>56</td>
</tr>
<tr>
<td>Men</td>
<td>17</td>
</tr>
<tr>
<td>Women</td>
<td>39</td>
</tr>
<tr>
<td>N.Y. State Residents</td>
<td>10</td>
</tr>
<tr>
<td>Out-of-State Residents</td>
<td>21</td>
</tr>
<tr>
<td>U.S. Citizens</td>
<td>31</td>
</tr>
</tbody>
</table>

Average Science GPA

- **Total enrolled students**: 3.5

Average GRE Scores (percentiles)

- **Verbal**: 10.8
- **Quantitative**: 76th percentile

Errors or Omissions

If you have questions or corrections concerning this donor list, please contact the Development Office at 1-800-345-3015. We regret any errors or omissions.
In November 2002, FDNY Lieutenant Steve Halliday was searching for survivors at a blazing house fire in Queens when a piece of burning furniture crashed down on him. He was nearly out of air when he was rescued, and his injuries were severe: fingers burned off, third-degree burns over 55 percent of his body.

But after extensive treatment at the NewYork-Presbyterian/Weill Cornell William Randolph Hearst Burn Center—including six surgeries and the application of an artificial skin invented by a team of researchers on the Ithaca and Manhattan campuses—Halliday has made a strong recovery. The firefighter was featured at the launch of Cornell’s “Far Above” capital campaign, held at Weill Cornell on October 26. Says Cornell President David Skorton: “If you had any question about how your gift to this campaign might be used, Steve Halliday is a prime example of how intercampus research is saving and improving lives.”

Halliday gave a short speech at the campaign launch, beginning by extending his arms over his head to demonstrate his range of motion. “Some doctors told me I would never walk again,” Halliday said. “The docs at Weill Cornell gave me hope, and today I am able to hold my children.” And more: Halliday even competes in triathlons. “I’m not the fastest guy there,” he told the audience. “But I’ve completed three races this year, thanks to Weill Cornell.”
To all alumni of Weill Cornell Medical College:

Thank you for making Reunion 2006 such a great success!